Jump to content
Forum sending old emails Read more... ×

Search the Community

Showing results for tags 'humidity'.

More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


  • News
    • Announcements
    • Suggestions
    • New users say Hi!
  • Spotlight!
    • Sponsor Spotlight
    • Sponsor Giveaways
  • Energia
    • Energia - MSP
    • Energia - TivaC/CC3XXX
    • Energia - C2000
    • Energia Libraries
  • MSP Technical Forums
    • General
    • Compilers and IDEs
    • Development Kits
    • Programmers and Debuggers
    • Code vault
    • Projects
    • Booster Packs
    • Energia
  • Tiva-C, Hercules, CCXXXX ARM Technical Forums
    • General
    • SensorTag
    • Tiva-C, Hercules, CC3XXX Launchpad Booster Packs
    • Code Vault
    • Projects
    • Compilers and IDEs
    • Development Kits and Custom Boards
  • Beagle ARM Cortex A8 Technical Forums
    • General
    • Code Snippets and Scripts
    • Cases, Capes and Plugin Boards
    • Projects
  • General Electronics Forum
    • General Electronics
    • Other Microcontrollers
  • Connect
    • Embedded Systems/Test Equipment Deals
    • Buy, Trade and Sell
    • The 43oh Store
    • Community Projects
    • Fireside Chat
  • C2000 Technical Forums
    • General
    • Development Kits
    • Code Vault
    • Projects
    • BoosterPacks


There are no results to display.

Find results in...

Find results that contain...

Date Created

  • Start


Last Updated

  • Start


Filter by number of...


  • Start



Website URL





Found 7 results

  1. mph

    Bosch Sensortech BME280

    The Bosch BME280 pressure-temperature-humidity sensor is very popular for projects because there are breakout boards available from Adafruit and Sparkfun as well as a large library of code to interface it to Arduino MCUs. Not so much for the MSP430, especially transparent code to understand what is happening at the register level. I have written and tested some demo C-code that hopefully fills that gap. It sacrifices generality and efficiency for compactness and transparency. I use the F5529 Launchpad and communication with the sensor is via SPI using the UCB0 module. I2C is also available for the BME280 but not implemented here. Temperature and relative humidity (no pressure) data is obtained using the forced mode with periodic polling by the MSP430. Sensor and MCU are in low-power sleep modes when not active. Data is streamed to a terminal program that is interfaced to the Launchpad via serial UART. Each BME280 has unique trimming parameters that must be retrieved and properly parsed to convert the raw data. This process is quite complicated, so separate functions were developed to handle them and placed in an include library. My IDE is CCS 6.1.3 with nofloat printf support. This code should work directly in the MSP430x5xx and MSP430x6xx families. Other MSP430 series such as FR and value-line will need to make appropriate module/register modifications. Link to github is here: https://github.com/microphonon/BME280
  2. Sensirion has recently introduced an inexpensive, low-power temperature humidity sensor SHTC3 designed for operation in the range 1.62--3.6V . It should be a useful peripheral for MSP430 battery-powered applications. I have tested 3 sensors with the F5529 Launchpad and they exhibit reliable, consistent behavior. For reference, I have written some demo code for I2C communication that is available on github: https://github.com/microphonon/SHTC3 The SHTC3 comes in a small DFN package, so to do breadboard testing I had to build my own breakout boards and use reflow soldering (see photo).
  3. There is code available to implement I2C communication between the MSP430 and the HDC2010 temperature-humidity sensor, but it's a bit like an onion -- you have to peel away layer after layer in various libraries to drill down into what is happening at the register level. I decided to write some transparent demo code for this sensor that is self-contained: everything related to the I2C interface is in a single C program. It has been successfully tested with the F5529 Launchpad. This is a simple MCU polling operation that periodically makes a T-H measurement using the on-demand mode of the sensor. The data is sent to the serial port for display on a terminal program. The on-board heater is activated for a few seconds upon reset. I have not implemented the temperature-humidity high/low interrupts. One could also configure the sensor to output data periodically and toggle its DRDY pin to wake-up the MCU from LPM4. Polling code is here: https://github.com/microphonon/HDC2010 The HDC2010 is a tiny sensor with a 6-bump BGA footprint. TI makes an evaluation module that uses an MSP430F5528 to interface the sensor with a configuration/graphing GUI program. Their program only runs on 64-bit Windows. The portion of the PCB hardware containing the sensor can be broken off (permanently) to reduce thermal mass and allow placement in a project. I decided to make my own breakout boards (see photo), but just learned that MikroElektronika started selling essentially the same thing for $13 (MIKROE-2937).
  4. Sir , how to code senshub with CC3200 for sensing humidity and the environmental temp. Is any modal prog available for this sir
  5. albertRM

    Readding DHT11

    Hi all i'm programming by MSP430fr5739 a temperature and humidity reading by the DHT11 sensor. ?The wire are correct, and so the problem is'nt in the link, it is in the code. This is my code, usind the dht11 library, find on internet. ?The main problem is that i don't know how to read the value of T and H, and maybe there is some problems in the reading (probably in the interrupt) ?Thanks for the advice. ?MAIN CODE: #include <msp430.h> #include <DHT11_LIB.h> unsigned char RH_byte1; unsigned char RH_byte2; unsigned char T_byte1; unsigned char T_byte2; unsigned char checksum; unsigned char Packet[5]; unsigned char volatile TOUT; unsigned char volatile SECOND_TIMER=0; void init(void); #pragma vector = TIMER0_A0_VECTOR __interrupt void CCR0_ISR(void){ SECOND_TIMER++; TOUT=1; //TOG (P1OUT,0x01); per il led CLR (TA0CCTL0, CCIFG); } void init(){ WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer PJDIR = BIT1+BIT2+BIT3; // Set LED to output direction PJOUT = BIT1; //high the LED PJOUT = BIT2; //Set clock and timer CSCTL1 = BIT1+BIT2 ; // DCO a 8MHz CSCTL2= SELS_3; // SMCLK take DCOCLK TA0CCR0 = 50000; // Initialize the timer to count at 20Hz TA0CTL = TAIE_1; // Enable interrupt TA0CTL = TASSEL_2 + ID_3 + MC_1+ TACLR ; // SMCLK, div 8, up mode, e fa il clear _enable_interrupt(); //Enable global interrupt } void main(void) { init(); while(1){ //Must wait 1 second initially and between all reads if(SECOND_TIMER >= 5){ TOG (PJOUT,BIT1); // Simple way to gather all data with one instruction read_Packet(Packet); RH_byte1 = Packet[0]; RH_byte2 = Packet[1]; T_byte1 = Packet[2]; T_byte2 = Packet[3]; checksum = Packet[4]; if (check_Checksum(Packet)) SET (PJOUT, BIT1); //Se il checksum giusto si riaccende SET (TA0CTL, TACLR); SET (TA0CTL, 0x10); //Up mode TA0CCR0 = 50000; //Initialize the timer to count at 5Hz SECOND_TIMER = 0; //Clear counter } } } DHT11 LIBRARY: #ifndef DHT11_LIB_H_ #define DHT11_LIB_H_ #define TST(x,y) (x & (y)) #define SET(x,y) (x|= (y)) #define CLR(x,y) (x &= ~(y)) #define TOG(x,y) (x ^= (y)) #define DPIN BIT0 extern unsigned char volatile TOUT; void start_Signal(void); void start_Signal(){ SET(P2DIR, DPIN); // Set Data pin to output direction CLR(P2OUT,DPIN); // Set output to low __delay_cycles(25000); // Low for at least 18ms SET(P2OUT,DPIN); //HIGH __delay_cycles(30); // High for at 20us-40us CLR(P2DIR,DPIN); // Mette il pin in ricezione (Input) } unsigned char check_Response(void); unsigned char check_Response(){ TOUT=0; SET(TA0CTL,TACLR); //Reset timer to 0; TA0CCR0 = 100; //Set timer to overflow in 100uS. SET(TA0CTL,CCIE); //And enable timer interrupt while(!(TST(P2IN,DPIN)) && !TOUT); //while if IN=0 if (TOUT) return 0; else { SET(TA0CTL,TACLR); SET(TA0CTL,CCIE); while((TST(P2IN,DPIN)) && !TOUT); if(TOUT) return 0; else{ CLR(TA0CTL,CCIE); // Disable timer interrupt return 1; } } } unsigned char read_Byte(void); unsigned char read_Byte(){ TOUT = 0; unsigned char num = 0; unsigned char i; CLR(TA0CTL,CCIE); for (i=8; i>0; i--){ while(!(TST(P2IN,DPIN))); //wait the hing signal SET(TA0CTL,TACLR); // clear SET(TA0CTL,0x10); //Up mode (Mode control 01b) SET(TA0CTL,CCIE); //enable interrupt while(TST(P2IN,DPIN)); //wait the low signal CLR(TA0CTL,0x30); //held counter if (TA0R > 0x28) //TA0R
  6. albertRM

    How read DHT11

    Hello everyone, I just started programming in C ++ to solve a small university project. I am a newbie in programming that's why I ask you a hand in writing the code. I'm working with Msp430fr5739 and the temperature and humidity sensor is the DHT11. The connections have already been made and we have to write the code. I already have the library DHT11 and I'm working in CCS. Can someone share a code that works and allows me to read the values of temperature and humidity? Thank you (and sorry for my english)
  7. Here is the zip that bluehash requested that I post. Tested with DHT11, output to an LCD. Here is the original post: http://forum.43oh.com/topic/2826-ladyadas-dht-library-lcd/ AdaDHT11.zip