Jump to content
43oh

displacedtexan

Members
  • Content Count

    29
  • Joined

  • Last visited

Reputation Activity

  1. Like
    displacedtexan reacted to cubeberg in Nokia 5110 display   
    Try pulling the TX/RX jumpers - you're using one of those pins for the display.  Either that or don't use 1.1 and 1.2.
  2. Like
    displacedtexan reacted to oPossum in Nokia 5110 display   
    That will hold the LCD in reset. You have to pulse Reset low before beginning communication with the LCD. This can be done with GPIO (best) or a R/C reset circuit.
  3. Like
    displacedtexan reacted to oPossum in Interfacing with DHT11 Humidty + Temp sensor   
    I got the DHT11 sensors from SunTek today and wrote some C code to read it. This uses TimerA for accurate time measurement, and polling to allow use on any pin. The internal pullup resistor is used, so an external one is not needed.

    A six byte array passed to read_dht() will be filled with the start bit, 4 data bytes, and the checksum. Return is 0 for success, or a negative value for failure. This code can run at 1 MHz or higher.

    The DHT11 seems to need about 300 ms between readings, less time will result in the sensor sometimes being non-responsive. The fractional bytes are always 0 for the DHT11.

     
    int read_dht(unsigned char *p) { // Note: TimerA must be continuous mode (MC_2) at 1 MHz const unsigned b = BIT4; // I/O bit const unsigned char *end = p + 6; // End of data buffer register unsigned char m = 1; // First byte will have only start bit register unsigned st, et; // Start and end times // p[0] = p[1] = p[2] = p[3] = p[4] = p[5] = 0; // Clear data buffer // P1OUT &= ~b; // Pull low P1DIR |= b; // Output P1REN &= ~b; // Drive low st = TAR; while((TAR - st) < 18000); // Wait 18 ms P1REN |= b; // Pull low P1OUT |= b; // Pull high P1DIR &= ~b; // Input // st = TAR; // Get start time for timeout while(P1IN & if((TAR - st) > 100) return -1; // Wait while high, return if no response et = TAR; // Get start time for timeout do { // st = et; // Start time of this bit is end time of previous bit while(!(P1IN & ) if((TAR - st) > 100) return -2; // Wait while low, return if stuck low while(P1IN & if((TAR - st) > 200) return -3; // Wait while high, return if stuck high et = TAR; // Get end time if((et - st) > 110) *p |= m; // If time > 110 us, then it is a one bit if(!(m >>= 1)) m = 0x80, ++p; // Shift mask, move to next byte when mask is zero } while(p < end); // Do until array is full // p -= 6; // Point to start of buffer if(p[0] != 1) return -4; // No start bit if(((p[1] + p[2] + p[3] + p[4]) & 0xFF) != p[5]) return -5; // Bad checksum // return 0; // Good read }
  4. Like
    displacedtexan got a reaction from pfactorial in One last BMP085 Project...   
    GWD,
     
    Thanks for the post and files.
     
    I am a noob and tried to do something similar with the BMP085 and MSP430G2231 when the launchpad was released and never could get I2C to work correctly. Given the flash limitations of that chip, not sure it would have been possible...
     
    Your work inspired me to update ccs, install grace, and get it working! BTW, for any other noobs reading this, you will need to attach pullup resistors to SCL & SDA, jumper the TXD and RXD pins since they seem reversed on the 2553, and remove the jumper for pin 1.6 that connects it to the Launchpads LED2.
     
    Grace seems nice. It is very easy for a noob to get stuck configuring pins, clocks, etc. It was nice to refer back to see what speed you had the UART running at, the pinout for SCL/SDA, etc.
     
    Great stuff!
     
    Thanks again...
  5. Like
    displacedtexan reacted to gwdeveloper in One last BMP085 Project...   
    Ok, so the MSP-EXP430F5529 dev board may not provide me with optimal hardware I/O for my greenhouse controller. Basically, I'd want the power/speed of the F5529 without the accelerometer. If I were rebuilding this board, I'd move the LCD SPI over to UCA1 and free up UCB1 for an I2C channel. UCB0 is being used for the RF2500t interface. So...
     
    My solution (for now) is to use a standalone G2553 as an I2C to UART translator. It actually works out well but not my optimal hardware configuration. This project may not be useful for many but some might find bits of the code helpful. The kicker, though, is I configured all of the hardware using Grace. :crazy:
     
    If you have a BMP085, you can open a terminal on your launchpad port and receive temperature and barometric pressure.
     

    /****************************************************************/ /* Greg Whitmore */ /* greg@gwdeveloper.net */ /* www.gwdeveloper.net */ /****************************************************************/ /* released under the "Use at your own risk" license */ /* use it how you want, where you want and have fun */ /* debugging the code. */ /* MSP-EXP430G2553 */ /****************************************************************/ /* includes */ #include #include #include #include "itoa.h" /* bmp085 defines */ #define BMP085_ADDR 0x77 #define BMP085_CTRL_REG 0xF4 #define BMP085_TEMP_REG 0x2E #define BMP085_PRESSURE_REG 0x34 // oss =0 //#define BMP085_PRESSURE_REG_OSS1 0x74 // oss =1, longer delays needed 7.5ms //#define BMP085_PRESSURE_REG_OSS2 0xB4 // oss =2, 13.5ms //#define BMP085_PRESSURE_REG_OSS3 0xF4 // oss =3, 25.5ms #define BMP085_MSB_REG 0xF6 #define BMP085_LSB_REG 0xF7 #define BMP085_CONV_REG_XLSB 0xF8 /* prototypes */ // bmp085 void bmp085_cal(void); unsigned int bmp085_ut(void); unsigned long bmp085_up(void); void get_bmp085(void); // iic void iic_init(void); void iic_tx_init(void); void iic_rx_init(void); void start_TX(void); void start_RX(void); int sendByte_getBytes(unsigned char reg_2_read, int bytes_to_rx); //uart void TXString( char* string, int length ); /* variables */ // bmp085 // cal data int ac1; int ac2; int ac3; unsigned int ac4; unsigned int ac5; unsigned int ac6; int b1; int b2; int mb; int mc; int md; // true temp long ut; long x1; long x2; long b5; int bmp_temp = 0; //true pressure long up; long x3; long b3; unsigned long b4; long b6; unsigned long b7; long p; long bmp_pres = 0; // adjusters long b6Temp; long x1Temp; //unsigned int i; unsigned char temp_buffer[8]; unsigned char pres_buffer[8]; // tx constants const unsigned char utTxData[] = { BMP085_CTRL_REG, BMP085_TEMP_REG }; // uncomp temp reg const unsigned char upTxData[] = { BMP085_CTRL_REG, BMP085_PRESSURE_REG }; // oss =0 see bmp085.h const unsigned char msbData[] = { BMP085_MSB_REG }; // iic unsigned char *PTxData; // Pointer to TX data unsigned char TXByteCtr; unsigned char *PRxData; // Pointer to RX data unsigned char RXByteCtr; volatile unsigned char RxBuffer[3]; // Allocate 3 byte of RAM void main(void) { CSL_init(); // Activate Grace-generated configuration __enable_interrupt(); // Set global interrupt enable bmp085_cal(); // load calibration data get_bmp085(); // loop to collect temp & pressure // and TX via UART } // store PROM data into usable variables void bmp085_cal(void) { ac1 = sendByte_getBytes(0xAA, 2); __delay_cycles(1000); ac2 = sendByte_getBytes(0xAC, 2); __delay_cycles(1000); ac3 = sendByte_getBytes(0xAE, 2); __delay_cycles(1000); ac4 = sendByte_getBytes(0xB0, 2); __delay_cycles(1000); ac5 = sendByte_getBytes(0xB2, 2); __delay_cycles(1000); ac6 = sendByte_getBytes(0xB4, 2); __delay_cycles(1000); b1 = sendByte_getBytes(0xB6, 2); __delay_cycles(1000); b2 = sendByte_getBytes(0xB8, 2); __delay_cycles(1000); mb = sendByte_getBytes(0xBA, 2); __delay_cycles(1000); mc = sendByte_getBytes(0xBC, 2); __delay_cycles(1000); md = sendByte_getBytes(0xBE, 2); __delay_cycles(1000); } // read uncompensated temperature and return msb & lsb unsigned int bmp085_ut(void) { iic_tx_init(); __delay_cycles(1000); PTxData = (unsigned char *)utTxData; // send control reg and temp reg TXByteCtr = 2; // Load TX byte counter start_TX(); __delay_cycles(200000); // long delay here or it hangs on the valueline mcus return (sendByte_getBytes(BMP085_MSB_REG, 2)); } // read uncompensated pressure and return msb, lsb & xlsb unsigned long bmp085_up(void) { iic_tx_init(); __delay_cycles(1000); PTxData = (unsigned char *)upTxData; // send control reg and temp reg TXByteCtr = 2; // Load TX byte counter start_TX(); __delay_cycles(200000); // long delay here or it hangs on the valueline mcus PTxData = (unsigned char *)msbData; // send msb read register TXByteCtr = 1; start_TX(); iic_rx_init(); // set RX interrupt __delay_cycles(200000); // long delay here or it hangs on the valueline mcus PRxData = (unsigned char *)RxBuffer; // rx buffer RXByteCtr = 3; // number of bytes to receive start_RX(); // returning longs instead of ints to allow 2^16 shifts // sendByte_getBytes not used here due to long shifts return ( (( (long)RxBuffer[0] << 16) | ( (long)RxBuffer[1] << 8) | (long)RxBuffer[2]) >> 8); } // collect uncompensated temp and pressure // calculate compensated temp and pressure then transmit via UART void get_bmp085() { while (1){ ut = bmp085_ut(); up = bmp085_up(); // calc true temp x1 = ((long)ut - ac6) * ac5 >> 15; x2 = ((long)mc << 11) / (x1 + md); b5 = x1 + x2; bmp_temp = (b5 + 8) >> 4; // itoa function added itoa(bmp_temp, (char*)temp_buffer); // move integer into char buffer // calc true pressure b6 = b5 - 4000; //x1 = (b2 * (b6 * b6) >> 12) >> 11; // won't work this way on the value line LSR_23 error b6Temp = b6 * b6; x1Temp = b2 * b6Temp; x1Temp = x1Temp >> 12; x1 = x1Temp >> 11; x2 = (ac2 * b6) >> 11; x3 = x1 + x2; b3 = ((long)ac1 * 4 + x3 + 2) >> 2; // ???? so many 'corrections' on the web this one works though x1 = ac3 * b6 >> 13; x2 = (b1 * ((b6 * b6) >> 12)) >> 16; x3 = ((x1 + x2) + 2) >> 2; b4 = (ac4 * (unsigned long)(x3 + 32768)) >> 15; b7 = ((unsigned long)up - b3) * 50000; if (b7 < 0x80000000) { p = (b7 * 2) / b4;} else {p = (b7 / b4) *2;} x1 = (p >> 8) * (p >> 8); x1 = (x1 * 3038) >> 16; x2 = (-7357 * p) >> 16; bmp_pres = p + ((x1 + x2 + 3791) >> 4); // ltoa part of stdlib.h ltoa(bmp_pres, (char*)pres_buffer); TXString((char*)temp_buffer, sizeof temp_buffer); TXString("\r\n", 2); TXString((char*)pres_buffer, sizeof pres_buffer); TXString("\r\n", 2); __delay_cycles(500000); } } void iic_tx_init() { UCB0I2CSA = BMP085_ADDR; UCB0I2CIE |= UCB0TXIE; // Enable TX interrupt } void iic_rx_init(void) { UCB0I2CIE |= UCB0RXIE; // enable RX interrupt } // send 1 byte, return 2 bytes - needs the return expanded for X bytes int sendByte_getBytes(unsigned char reg_2_read, int bytes_to_rx) { // transmit slave address and register to read iic_tx_init(); __delay_cycles(1000); PTxData = (unsigned char *)&reg_2_read; // TX array start address TXByteCtr = sizeof reg_2_read; // Load TX byte counter start_TX(); // // receive requested bytes iic_rx_init(); // set RX interrupt __delay_cycles(1000); PRxData = (unsigned char *)RxBuffer; // rx buffer RXByteCtr = bytes_to_rx; // number of bytes to receive start_RX(); // return ((int)RxBuffer[0] << 8) | (int)RxBuffer[1]; // currently only returning 2 bytes } // iic start transmitting void start_TX(void) { UCB0CTL1 |= UCTR + UCTXSTT; // I2C TX, start condition __bis_SR_register(LPM0_bits + GIE); // Enter LPM0, enable interrupts __no_operation(); // Remain in LPM0 until all data // is TX'd while (UCB0CTL1 & UCTXSTP); // Ensure stop condition got sent } // iic restart and receive void start_RX(void) { while (UCB0CTL1 & UCTXSTP); // wait for stop UCB0CTL1 &= ~UCTR; // restart, set as receiver UCB0CTL1 |= UCTXSTT; // start condition __bis_SR_register(LPM0_bits + GIE); while (UCB0CTL1 & UCTXSTP); } // interrupt pragma is defined in grace void iic_TX_isr(void) { if (TXByteCtr) // Check TX byte counter { UCB0TXBUF = *PTxData++; // Load TX buffer TXByteCtr--; // Decrement TX byte counter } else { UCB0CTL1 |= UCTXSTP; // I2C stop condition IFG2 &= ~UCB0TXIFG; // Clear USCI_B0 TX int flag } } // interrupt pragma is defined in grace void iic_RX_isr(void) { RXByteCtr--; // Decrement RX byte counter if (RXByteCtr) { P1OUT ^= 0x10; *PRxData++ = UCB0RXBUF; // Move RX data to address PRxData if (RXByteCtr == 1) // Only one byte left? UCB0CTL1 |= UCTXSTP; // Generate I2C stop condition } else { *PRxData = UCB0RXBUF; // Move final RX data to PRxData } } // tx function borrowed from TI's virtual_com_cmds.c void TXString( char* string, int length ) { int pointer; for( pointer = 0; pointer < length; pointer++) { volatile int i; UCA0TXBUF = string[pointer]; while (!(IFG2&UCA0TXIFG)); // USCI_A0 TX buffer ready? } } // timer A isr is simply toggling activity light for now. // future pwm functions to go here void timer_A_ISR(void) { P1OUT ^= BIT0; }
  6. Like
    displacedtexan reacted to cde in I2C problems   
    Did you grab my i2c code from the i2c-lcd project? If so, look at the i2c explorer I made. Has working i2c write and reads with ability for ack or nack reads.
     
    Additionally, USISRL is never cleared between sending the data, and receiving the ACK/NACK. Accordingly, the function returns the value you had, shifted right once, with the LSB set as the ack or nack.
     
    Try adding
    USISRL = 0x00;
    Between the tx and rx sections of the i2c_write8 function.
    This will empty the USI data holder, so it should return just a 0x01 or 0x00.
     
    As for the 7 bits vs 8 bits, from what I've read of the Arduino i2c library, it simply handles the last bit for you. My i2c and coding is no where as advanced, so you have to choose the full 8bit address.
     
    Oh, and just to make sure, the launchpad and the sensor share a common ground, right?
×
×
  • Create New...