Jump to content

dubnet

Members
  • Content Count

    566
  • Joined

  • Last visited

  • Days Won

    30

Reputation Activity

  1. Like
    dubnet got a reaction from bluehash in Shipping label printer   
    Hello Bluehash,
     
    We have had good luck with the Dymo LabelWriter. We use the smaller ones but here is one model that does 4 x 6:
     
    http://www.amazon.com/DYMO-LabelWriter-4XL-Label-Printer/dp/B002M1LGJ4
     
    Zebra makes pretty good label printers as well but they are more costly.
     
    YMMV
  2. Like
    dubnet reacted to zeke in Howto: Launchpad as External Programmer   
    Hi Guys,
     
    I just fought my way through the process of getting a Launchpad to operate as a standalone programmer on a virgin windows machine. I didn't want to install CCS5.1 to get this to work. I want the bare minimum install footprint because this is going on a production line computer.
     
    Follow this process and it should work for you too.
     
    1. Install the FET430UIF Low-Level USB VCP Drivers.
    2. Plug in the Launcpad to the PC and let the PC assign the drivers to the Launchpad.
    3. Open up a command console and enter the command "devmgmt.msc".
    4. Verify the "MSP430 Application UART" is present under Ports (Com & LPT).
    5. Download and Install the FET Pro430 Lite from Elpotronics.
    6. Open up FETPro430 and click on Setup->Connection/DeviceReset.
    7. Verify that the COM Port is USB (Automatic)
    8. Open code file and select your TI .out or Intel .hex file.
    9. Select the Microcontroller group and target ie: MSP430G2xx, MSP430G2553
    10. Connect GND, TEST and RESET (at minimum) to your target board. Make sure there's power applied to your circuit in this case.
    11. Click on AUTO PROG. and watch your target get programmed.
     
    This should work on your windows PC that does has never had CCS installed on it. And you won't have to resort to installing it either.
     
    Also, this should work with any version of Launchpad.
  3. Like
    dubnet reacted to bluehash in New TI GPS Module Kit   
    New CC4000 chip automaticall parses GPS NMEA strings.
    CC4000GPSEM - CC4000 GPS Module Kit
     
    Fully integrated GPS solution

    Embedded GPS driver
    NMEA protocol communication
    Reduced system complexity
    Minimal loading on host CPU
    Enables GPS functionality with all MCUs and MPUs
    Based on 6th generation GPS solution shipping for several years (millions of units shipped)
     
    CC4000 Specifications

    Protocol Communication - NMEA (provides time, position, speed, satellite status, and course)
    Performance - Autonomous cold start TTFF of 35 seconds in open sky signal conditions
    Autonomous hot start TTFF of ~1 second in open sky signal conditions
    Tracking Accuracy better than 3 meters
    GPS tracking sensitivity -- -162 dBm
    Embedded software - Fully integrated GPS driver
    Push-to-fix - Single GPIO activates power management for active and deep sleep
    Ephemeris data - Automatically maintains satellite positioning information, valid for up to 4 hours
    Pulse-per-second (PPS) generator - Independent output for high precision timing applications with accuracy Host interface - UART
     
    Kit Contents
    GNS TC6000GN module and EM board
    Jumpers required to run software on MSP-EXP430F5529
  4. Like
    dubnet reacted to gwdeveloper in SimpiciTI Tutorial for CC2500   
    This tutorial is meant to provide simple instruction to prepare a SimpliciTI wireless project using the TI Launchpad and CC2500 radio. Currently, CCSv5.1 will compile this program but have a few syntax errors. They can be ignored for now. CCSv4 will compile with no issues.

    Please feel free to critique and ask questions. It helps to make us all better.

    Part 1 of 2

    Hardware Needed:
    Launchpad with MSP430G2553
    CC2500 Radio (several variants available; MDFLY CC2500 breakout or ez430-RF2500t)
    (will insert an image of various hardware versions from TI to DIY)

    Software Needed:
    TI's CCS v5.1 http://processors.wi...hp/Download_CCS
    SimpliciTI 1.1.1 for CCS http://www.ti.com/tool/simpliciti
    LP_G2553.zip (launchpad BSP for simpliciTI)
    2274_SimpliciTI_Toggle.zip (only needed for RF2500T used as slave; it will disable the cpu and set up peripherals to toggle leds) 2274_SimpliciTI_Toggle.zip

    Step 1: Install Softwares.

    - Install CCS v5 OR V6 for the MSP430 (if you don't already use CCS)
    - Install SimpliciTI 1.1.1 (make note of the install directory; we'll use C:\Texas Instruments\SimpliciTI-CCS-1.1.1)
    - unzip LP_G2553.zip bsp files to C:\Texas Instruments\SimpliciTI-CCS-1.1.1\Components\bsp\boards
    - modified vlo_rand library for easy address assignment will be unzipped later
    - for RF2500T, unzip 2274_SimpliciTI_Toggle.zip to your current CCS workspace
    --- this project will need to be imported to CCS via Project -> Import Existing CCS Project

    Step 2: Create CCS Project

    -File -> New CCS Project
    -Give project name. Select MSP430 Family and MSP430G2553 as variant. Connection should be left to default and Empty Project selected for template.
    5_2folder_structure.JPG[/attachment]

    Step 4: Create project file structure

    -Now you will need to open the SimpliciTI\components folder.
    --- for eg; C:\Texas Instruments\SimpliciTI-CCS-1.1.1\Components
    (after the following actions, select "Link To" for the copy action)
    -- drag 3 files from ..\bsp to the bsp project folder
    -- drag 3 files from ..\mrfi to the mrfi project folder
    -- drag all files from ..\Simpliciti\nwk to nwk project folder
    -- drag all files from ..\Simpliciti\nwk_applications folder to nwk applications project folder
    -We'll borrow the nwk .dat files from the EZ430RF project
    --drag smpl_nwk_config.dat from \SimpliciTI-CCS-1.1.1\Projects\Examples\eZ430RF\Simple_Peer_to_Peer\CCS\Configuration to the configuration project folder.
    --drag smpl_config.dat from \SimpliciTI-CCS-1.1.1\Projects\Examples\eZ430RF\Simple_Peer_to_Peer\CCS\Configuration\End_Device to the end device project folder.
    [attachment=1]5_3linked_files.JPG[/attachment]

    end of part 1. (limited due to 5 attachments per entry)
  5. Like
    dubnet reacted to oPossum in Time & Temperature on Nokia 7110   
    This uses code from Software RTC, Using the internal temperature sensor and Nokia 5110 template class. The code has been modified and refined a bit for this project.
     



     
    main.cpp

    #include #include #include #include #include "nokia7110tl.h" using namespace nokia7110; static const unsigned char ti[] = { 48, 48 / 8, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0xFC,0xFC,0xFC,0xFC,0xFC,0xFC,0xFC, 0xFC,0xFC,0xFC,0xFC,0x00,0x00,0x00,0x00,0x00,0xF0, 0xF0,0xF0,0xF0,0xF0,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFC,0xFC,0x3C,0x80,0xFC,0xFD, 0xFD,0xFD,0x3D,0x81,0xFC,0xFC,0xFC,0xFC,0xFC,0xFC, 0xFC,0xFC,0xFC,0xFC,0x00,0x00,0x00,0x00, 0x00,0x1C,0x7C,0xFC,0xFC,0xFC,0xFC,0xFC,0xFC,0xFC, 0xFC,0xFC,0xFC,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xF7,0xF0,0xF0,0x00,0xF0,0xFF,0xFF,0xFF, 0xFF,0x0F,0xF0,0xF0,0xF0,0xF0,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xF8,0xF0,0x00,0x00, 0x00,0x00,0x00,0x00,0x01,0x03,0x07,0x3F,0x7F,0xFF, 0xFF,0xFF,0xFF,0xFF,0x7F,0x3F,0x3F,0x7F,0xFF,0xFF, 0xFF,0xFF,0xFF,0x1F,0x00,0x1E,0x1F,0x1F,0x1F,0x1F, 0x01,0x1E,0x1F,0xDF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0x7F,0x7F,0x3F,0x3F,0x3F,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x01,0x01,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x03, 0x0F,0x3F,0xFF,0xFE,0xFE,0xFE,0xFC,0xFC,0xFC,0xFC, 0xFC,0xFC,0xFC,0x7F,0x1F,0x07,0x03,0x03,0x01,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x01,0x07,0x0F,0x0F,0x1F,0x1F,0x3F, 0x3F,0x3F,0x3F,0x1C,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; /* P1.0 Reset P1.3 Temp Sensor (Not used) P2.0 Serial Data P2.1 Backlight P2.2 Chip Select P2.3 Data/Command P2.4 Serial Clock P2.5 Pushbutton */ // P1 static const unsigned LCD_RESET = BIT0; static const unsigned RXD = BIT2; static const unsigned SWITCH = BIT3; // P2 static const unsigned LCD_DATA = BIT0; static const unsigned LCD_BACKLIGHT = BIT1; static const unsigned LCD_CE = BIT2; static const unsigned LCD_DC = BIT3; static const unsigned LCD_CLK = BIT4; static const unsigned LCD_BTN = BIT5; Nokia7110 lcd; void show_time(const struct tm *t) // Show time on LCD { static const char *dow[7] = { "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday" }; int x, w; const char *s; div_t d; if(t->tm_hour < 10) { x = -2; lcd.fill(0, 0, 9, 2, 0); d.rem = t->tm_hour; } else { x = 3; lcd.fill(0, 0, 3, 2, 0); d = div(t->tm_hour, 10); lcd.pd12(d.quot, x, 0); } lcd.pd12(d.rem, x + 11, 0); lcd.pd12(11, x + 22, 0); d = div(t->tm_min, 10); lcd.pd12(d.quot, x + 27, 0); lcd.pd12(d.rem, x + 38, 0); lcd.pd12(11, x + 49, 0); d = div(t->tm_sec, 10); lcd.pd12(d.quot, x + 54, 0); lcd.pd12(d.rem, x + 65, 0); lcd.fill(x + 76, 0, 7 - x, 2, 0); if(t->tm_mon < 9) { x = -5; lcd.fill(0, 2, 6, 2, 0); d.rem = t->tm_mon + 1; } else { x = 0; d = div(t->tm_mon + 1, 10); lcd.pd12(d.quot, x, 2); } lcd.pd12(d.rem, x + 11, 2); lcd.pd12(13, x + 22, 2); d = div(t->tm_mday, 10); lcd.pd12(d.quot, x + 30, 2); lcd.pd12(d.rem, x + 41, 2); lcd.pd12(13, x + 52, 2); d = div(t->tm_year % 100, 10); lcd.pd12(d.quot, x + 60, 2); lcd.pd12(d.rem, x + 71, 2); if(x) lcd.fill(x + 82, 2, 1 - x, 2, 0); s = dow[t->tm_wday]; w = strlen(s) * 6; x = (83 - w) >> 1; lcd.fill(0, 4, x, 1, 0); lcd.print((unsigned char)x, (unsigned char)4, s); x += w; lcd.fill(x, 4, 83 - x, 1, 0); } // Print integer from -999 to 9999 using 12 x 16 font void print_int(int i, const unsigned y) { if(i < -999 || i > 9999) return; const unsigned neg = i < 0; if(neg) i = -i; div_t d; d.quot = i; unsigned x = 48; do { d = div(d.quot, 10); lcd.pd12(d.rem, x -= 12, y); } while(d.quot); if(neg) lcd.pd12(14, x -= 12, y); while(x) lcd.pd12(10, x -= 12, y); } // Print integer from -999 to 9999 using 6 x 8 font void print_int(int i, unsigned x, const unsigned y) { if(i < -999 || i > 9999) return; const unsigned e = x; x += 24; const unsigned neg = i < 0; if(neg) i = -i; div_t d; d.quot = i; do { d = div(d.quot, 10); lcd.print(x -= 6, y, '0' + d.rem); } while(d.quot); if(neg) lcd.print(x -= 6, y, '-'); while(x > e) lcd.print(x -= 6, y, ' '); } void draw_bargraph(int f) { int x, y, bg; char c; unsigned char bgc[9] = { 0x80, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC, 0xFE, 0xFF, 0 }; char *bgl[8] = { "90", "80", "70", "60", "50", "40", "30", "20" }; x = 20; // bg = (f - (x - 5)) * 4 / 5; // for(y = 7; y >= 0; --y) { // lcd.pos(83, y); // if(bg < 0) { c = bgc[8]; } else if (bg > 7) { c = bgc[7]; } else { c = bgc[bg]; } lcd.write((unsigned char *)&c, 1, lcd_data); lcd.print(bgl[y], c); bg -= 8; } // } time_t tt; // Time in seconds since epoch unsigned adc; // ADC value #pragma vector = WDT_VECTOR // - Watchdog timer interrupt vector __interrupt void wdt_isr(void) // This interrupt will occur once per second { // ++tt; // Increment time_t __bic_SR_register_on_exit(LPM0_bits); // Wakeup main code } // // #pragma vector = ADC10_VECTOR // ADC conversion complete interrupt __interrupt void ADC10_ISR(void) // { // adc = ADC10MEM; // Read ADC __bic_SR_register_on_exit(LPM0_bits); // Wakeup main code } // int main(void) { int x, y; char c; struct tm ts; int dc, dk, df; // Temperature in degrees C, K, and F WDTCTL = WDTPW | WDTHOLD; P1REN = RXD | SWITCH; P1DIR = LCD_RESET; P1OUT = RXD | SWITCH | LCD_RESET; P2DIR = LCD_DC | LCD_CE | LCD_CLK | LCD_BACKLIGHT | LCD_DATA; P2REN = LCD_BTN; P2OUT = LCD_CLK | LCD_DC | LCD_CE | LCD_BACKLIGHT | LCD_BTN; ADC10CTL0 = 0; // Configure ADC ADC10CTL1 = INCH_10 | ADC10DIV_3; // ADC10CTL0 = SREF_1 | ADC10SHT_3 | REFON | ADC10ON | ADC10IE; ADC10CTL0 |= ADC10IE; // Enable ADC conversion complete interrupt // // 32 kHz xtal loading //BCSCTL3 = XCAP_1; // 6 pF (default) BCSCTL3 = XCAP_2; // 10 pF //BCSCTL3 = XCAP_3; // 12.5 pF // WDTCTL = WDTPW | WDTTMSEL | WDTCNTCL | WDTSSEL; // Use WDT as interval timer IE1 |= WDTIE; // Enable WDT interrupt _EINT(); // Enable interrupts // // Set initial time - there is no UI for this ts.tm_hour = 13; // Hour ts.tm_min = 37; // Minute ts.tm_sec = 42; // Second ts.tm_mon = 3; // Month (0 based!) ts.tm_mday = 20; // Day of Month ts.tm_year = 2012 - 1900; // Year ts.tm_wday = 5; // Day of Week - Not used by mktime() ts.tm_yday = 0; // Not used by mktime() ts.tm_isdst = 0; // DST flag - Not used by rtc_tick() // tt = mktime(&ts); // Convert tm struct to time_t // lcd.reset(); lcd.init(); lcd.clear(); lcd.print(30, 6, "MSP430"); lcd.print(18, 7, "Nokia 7110"); for(x = -47; x < 24; ++x) { lcd.bitmap(ti, x, 0); __delay_cycles(20000); } __delay_cycles(2000000); for(; x < 96; ++x) { lcd.bitmap(ti, x, 0); __delay_cycles(20000); } lcd.clear(); lcd.print(9, 7, "Character Set"); x = y = 0; lcd.pos(x, y); for(c = 32; c < 128; ++c) { lcd.print(c); if(++x >= 16) x = 0, lcd.pos(x, ++y); } __delay_cycles(3000000); lcd.clear(); ts.tm_hour = ts.tm_min = ts.tm_sec = 88; ts.tm_mon = 87; ts.tm_mday = ts.tm_year = 88; ts.tm_wday = 5; show_time(&ts); lcd.pd12(15, 48, 5); lcd.pd12(17, 59, 5); lcd.print(24, 7, "\x7F""C"); lcd.print(66, 7, "\x7F""K"); print_int(8888, 5); print_int(8888, 0, 7); print_int(8888, 42, 7); for(x = 15; x < 96; ++x) draw_bargraph(x); __delay_cycles(3000000); lcd.clear(); // lcd.pd12(15, 48, 5); // Degrees lcd.pd12(17, 59, 5); // F lcd.print(24, 7, "\x7F""C"); // C lcd.print(66, 7, "\x7F""K"); // K // for(; { // for-ever show_time(localtime(&tt)); // Convert time_t to tm struct and show on LCD __bis_SR_register(LPM0_bits + GIE); // Sleep until WDT interrupt ADC10CTL0 |= (ENC | ADC10SC); // Begin ADC conversion __bis_SR_register(LPM0_bits + GIE); // Sleep until conversion complete // // Convert to temperature dc = ((27069L * adc) - 18169625L) >> 16; // Vref = 1.5V dk = ((27069L * adc) - 268467L) >> 16; // Vref = 1.5V df = ((48724L * adc) - 30634388L) >> 16; // Vref = 1.5V // // Display on LCD print_int(df, 5); // Degrees F print_int(dc, 0, 7); // Degrees C print_int(dk, 42, 7); // Degrees K draw_bargraph(df); // Deg F Bargraph } // return 0; }
     
    nokia7110tl.h - C++ template class for Nokia 7110 (SED1565)

    namespace nokia7110 { unsigned char PNONE; typedef enum { lcd_command = 0, // Array of one or more commands lcd_data = 1, // Array of one or more bytes of data lcd_data_repeat = 2 // One byte of data repeated } lcd_cmd_type; template volatile unsigned char &_EP, unsigned char _CE, volatile unsigned char &_RP, unsigned char _RST, unsigned _RD> struct Nokia7110 { void write(const unsigned char *cmd, unsigned len, const lcd_cmd_type type = lcd_data); void reset(void); void init(void); void home(void); void pos(unsigned char x, unsigned char y); void clear(unsigned char x = 0); void fill(unsigned x, unsigned y, unsigned w, unsigned h, unsigned char z); void bitmap(const unsigned char *bmp, signed char x, signed char y, unsigned char w, unsigned char h); inline void bitmap(const unsigned char *bmp, signed char x, signed char y) { bitmap(bmp + 2, x, y, bmp[0], bmp[1]); }; void print(char c); inline void print(unsigned char x, unsigned char y, char c) { pos(x, y); print(c); }; void print(const char *s); inline void print(unsigned char x, unsigned char y, const char *s) { pos(x, y); print(s); }; void print(const char *s, unsigned char m); void printv(unsigned char x, unsigned char y, char *s); void pd12(unsigned n, unsigned x, unsigned y); }; template volatile unsigned char &_EP, unsigned char _CE, volatile unsigned char &_RP, unsigned char _RST, unsigned _RD> void Nokia7110<_SP, _CLK, _DATA, _CP, _DC, _EP, _CE, _RP, _RST, _RD>::write(const unsigned char *cmd, unsigned len, const lcd_cmd_type type) { register unsigned mask; if(&_EP != &PNONE) _EP &= ~_CE; do { mask = 0x0080; do { if(*cmd & mask) { _SP |= _DATA; _SP &= ~_CLK; } else { _SP &= ~(_CLK | _DATA); } _SP |= _CLK; mask >>= 1; } while(!(mask & 1)); if(&_CP == &PNONE) { __delay_cycles(_DC); } else { if(!type) _CP &= ~_DC; } if(*cmd & mask) { _SP |= _DATA; _SP &= ~_CLK; } else { _SP &= ~(_CLK | _DATA); } _SP |= _CLK; if(&_CP != &PNONE) _CP |= _DC; if(!(type & 2)) ++cmd; } while(--len); if(&_EP != &PNONE) _EP |= _CE; } template volatile unsigned char &_EP, unsigned char _CE, volatile unsigned char &_RP, unsigned char _RST, unsigned _RD> void Nokia7110<_SP, _CLK, _DATA, _CP, _DC, _EP, _CE, _RP, _RST, _RD>::reset(void) { if(&_RP == &PNONE) { // --- Set initial state of CLK, DC and CE as needed // * = output used for reset if(&_CP == &PNONE) { if(&_EP != &PNONE) { // CLK*, DATA, CE _EP |= _CE; } // else // CLK*, DATA } else { if(&_EP != &PNONE) { // CLK, DATA, DC*, CE if(&_SP == &_EP) { _SP |= (_CLK | _CE); } else { _SP |= _CLK; _EP |= _CE; } } else { // CLK, DATA, DC* _SP |= _CLK; } } // --- Reset pulse on CLK or DC as needed if(&_CP == &PNONE) { // No DC port, use CLK to reset _SP &= ~_CLK; __delay_cycles(_RD); _SP |= _CLK; } else { // Use DC to reset _CP &= ~_DC; __delay_cycles(_RD); _CP |= _DC; } } else { _RP &= ~_RST; if(&_EP != &PNONE) { if(&_SP == &_EP) { _SP |= (_CLK | _CE); } else { _SP |= _CLK; _EP |= _CE; } } else { _SP |= _CLK; } __delay_cycles(_RD); _RP |= _RST; } __delay_cycles(_RD); } template volatile unsigned char &_EP, unsigned char _CE, volatile unsigned char &_RP, unsigned char _RST, unsigned _RD> void Nokia7110<_SP, _CLK, _DATA, _CP, _DC, _EP, _CE, _RP, _RST, _RD>::init(void) { static const unsigned char init[] = { 0xA6, //Display: Normal 0xA3, //LCD Bias Settings: 1/7 0xA1, //ADC Selection: Reverse 0xC0, //Common Output: Normal Direction //0xC8, //Common Output: Upside Down 0x22, //Set the V5 output Voltage 0x81, //Set Electronic Volume Register 0x2E, //Power Controller Set // Booster circuit: ON // Voltage regulator circuit: ON // Voltage follower circuit: OFF 0x2F, //Power Controller Set // Voltage follower circuit: ON 0xE3, //Non-OPeration Command 0x40, //Set the start line 0xAF, //LCD On //0xA5, //Display All Points: ON 0xA4, //Display All Points: NORMAL }; write(init, sizeof(init), lcd_command); } template volatile unsigned char &_EP, unsigned char _CE, volatile unsigned char &_RP, unsigned char _RST, unsigned _RD> void Nokia7110<_SP, _CLK, _DATA, _CP, _DC, _EP, _CE, _RP, _RST, _RD>::home(void) { static const unsigned char home[] = { 0xB0, 0x11, 0x02 }; write(home, sizeof(home), lcd_command); } template volatile unsigned char &_EP, unsigned char _CE, volatile unsigned char &_RP, unsigned char _RST, unsigned _RD> void Nokia7110<_SP, _CLK, _DATA, _CP, _DC, _EP, _CE, _RP, _RST, _RD>::pos(unsigned char x, unsigned char y) { unsigned char c[3]; x += 18; c[0] = 0xB0 | y; c[1] = 0x10 | (x >> 4); c[2] = x & 0x0F; write(c, sizeof(c), lcd_command); } template volatile unsigned char &_EP, unsigned char _CE, volatile unsigned char &_RP, unsigned char _RST, unsigned _RD> void Nokia7110<_SP, _CLK, _DATA, _CP, _DC, _EP, _CE, _RP, _RST, _RD>::clear(unsigned char x) { for(unsigned y = 0; y < 9; ++y) { pos(0, y); write(&x, 96, lcd_data_repeat); } } template volatile unsigned char &_EP, unsigned char _CE, volatile unsigned char &_RP, unsigned char _RST, unsigned _RD> void Nokia7110<_SP, _CLK, _DATA, _CP, _DC, _EP, _CE, _RP, _RST, _RD>::fill(unsigned x, unsigned y, unsigned w, unsigned h, unsigned char z) { unsigned yy = y + h; unsigned char c[3]; x += 18; c[1] = 0x10 | (x >> 4); c[2] = (x & 0x0F); for(;y < yy; ++y) { c[0] = 0xB0 | y; write(c, sizeof(c), lcd_command); write(&z, w, lcd_data_repeat); } } template volatile unsigned char &_EP, unsigned char _CE, volatile unsigned char &_RP, unsigned char _RST, unsigned _RD> void Nokia7110<_SP, _CLK, _DATA, _CP, _DC, _EP, _CE, _RP, _RST, _RD>::bitmap(const unsigned char *bmp, signed char x, signed char y, unsigned char w, unsigned char h) { unsigned char c[3]; unsigned char ww; if(x < 0) { ww = w + x; bmp -= x; x = 0; } else if(x + w >= 96) { ww = (96 - x); } else { ww = w; } x += 18; c[0] = 0xB0 | y; c[1] = 0x10 | (x >> 4); c[2] = x & 0x0F; while(h--) { write(c, sizeof(c), lcd_command); write(bmp, ww); bmp += w; ++c[0]; } } static const unsigned char font[96][5] = { 0x00, 0x00, 0x00, 0x00, 0x00, // 0x00, 0x00, 0x5F, 0x00, 0x00, // ! 0x00, 0x07, 0x00, 0x07, 0x00, // " 0x14, 0x7F, 0x14, 0x7F, 0x14, // # 0x24, 0x2A, 0x7F, 0x2A, 0x12, // $ 0x23, 0x13, 0x08, 0x64, 0x62, // % 0x36, 0x49, 0x56, 0x20, 0x50, // & 0x00, 0x08, 0x07, 0x03, 0x00, // ' 0x00, 0x1C, 0x22, 0x41, 0x00, // ( 0x00, 0x41, 0x22, 0x1C, 0x00, // ) 0x2A, 0x1C, 0x7F, 0x1C, 0x2A, // * 0x08, 0x08, 0x3E, 0x08, 0x08, // + 0x00, 0x40, 0x38, 0x18, 0x00, // , 0x08, 0x08, 0x08, 0x08, 0x08, // - 0x00, 0x00, 0x60, 0x60, 0x00, // . 0x20, 0x10, 0x08, 0x04, 0x02, // / 0x3E, 0x51, 0x49, 0x45, 0x3E, // 0 0x00, 0x42, 0x7F, 0x40, 0x00, // 1 0x42, 0x61, 0x51, 0x49, 0x46, // 2 0x21, 0x41, 0x49, 0x4D, 0x33, // 3 0x18, 0x14, 0x12, 0x7F, 0x10, // 4 0x27, 0x45, 0x45, 0x45, 0x39, // 5 0x3C, 0x4A, 0x49, 0x49, 0x30, // 6 0x41, 0x21, 0x11, 0x09, 0x07, // 7 0x36, 0x49, 0x49, 0x49, 0x36, // 8 0x06, 0x49, 0x49, 0x29, 0x1E, // 9 0x00, 0x00, 0x14, 0x00, 0x00, // : 0x00, 0x00, 0x40, 0x34, 0x00, // ; 0x00, 0x08, 0x14, 0x22, 0x41, // < 0x14, 0x14, 0x14, 0x14, 0x14, // = 0x00, 0x41, 0x22, 0x14, 0x08, // > 0x02, 0x01, 0x51, 0x09, 0x06, // ? 0x3E, 0x41, 0x5D, 0x59, 0x4E, // @ 0x7C, 0x12, 0x11, 0x12, 0x7C, // A 0x7F, 0x49, 0x49, 0x49, 0x36, // B 0x3E, 0x41, 0x41, 0x41, 0x22, // C 0x7F, 0x41, 0x41, 0x41, 0x3E, // D 0x7F, 0x49, 0x49, 0x49, 0x41, // E 0x7F, 0x09, 0x09, 0x09, 0x01, // F 0x3E, 0x41, 0x49, 0x49, 0x7A, // G 0x7F, 0x08, 0x08, 0x08, 0x7F, // H 0x00, 0x41, 0x7F, 0x41, 0x00, // I 0x20, 0x40, 0x41, 0x3F, 0x01, // J 0x7F, 0x08, 0x14, 0x22, 0x41, // K 0x7F, 0x40, 0x40, 0x40, 0x40, // L 0x7F, 0x02, 0x1C, 0x02, 0x7F, // M 0x7F, 0x04, 0x08, 0x10, 0x7F, // N 0x3E, 0x41, 0x41, 0x41, 0x3E, // O 0x7F, 0x09, 0x09, 0x09, 0x06, // P 0x3E, 0x41, 0x51, 0x21, 0x5E, // Q 0x7F, 0x09, 0x19, 0x29, 0x46, // R 0x26, 0x49, 0x49, 0x49, 0x32, // S 0x01, 0x01, 0x7F, 0x01, 0x01, // T 0x3F, 0x40, 0x40, 0x40, 0x3F, // U 0x1F, 0x20, 0x40, 0x20, 0x1F, // V 0x3F, 0x40, 0x38, 0x40, 0x3F, // W 0x63, 0x14, 0x08, 0x14, 0x63, // X 0x03, 0x04, 0x78, 0x04, 0x03, // Y 0x61, 0x51, 0x49, 0x45, 0x43, // Z 0x00, 0x7F, 0x41, 0x41, 0x41, // [ 0x02, 0x04, 0x08, 0x10, 0x20, // '\' 0x00, 0x41, 0x41, 0x41, 0x7F, // ] 0x04, 0x02, 0x01, 0x02, 0x04, // ^ 0x80, 0x80, 0x80, 0x80, 0x80, // _ 0x00, 0x03, 0x07, 0x08, 0x00, // ' 0x20, 0x54, 0x54, 0x54, 0x78, // a 0x7F, 0x28, 0x44, 0x44, 0x38, // b 0x38, 0x44, 0x44, 0x44, 0x28, // c 0x38, 0x44, 0x44, 0x28, 0x7F, // d 0x38, 0x54, 0x54, 0x54, 0x18, // e 0x00, 0x08, 0x7E, 0x09, 0x02, // f 0x18, 0xA4, 0xA4, 0xA4, 0x7C, // g 0x7F, 0x08, 0x04, 0x04, 0x78, // h 0x00, 0x44, 0x7D, 0x40, 0x00, // i 0x00, 0x20, 0x40, 0x40, 0x3D, // j 0x00, 0x7F, 0x10, 0x28, 0x44, // k 0x00, 0x41, 0x7F, 0x40, 0x00, // l 0x7C, 0x04, 0x78, 0x04, 0x78, // m 0x7C, 0x08, 0x04, 0x04, 0x78, // n 0x38, 0x44, 0x44, 0x44, 0x38, // o 0xFC, 0x18, 0x24, 0x24, 0x18, // p 0x18, 0x24, 0x24, 0x18, 0xFC, // q 0x7C, 0x08, 0x04, 0x04, 0x08, // r 0x48, 0x54, 0x54, 0x54, 0x24, // s 0x04, 0x04, 0x3F, 0x44, 0x24, // t 0x3C, 0x40, 0x40, 0x20, 0x7C, // u 0x1C, 0x20, 0x40, 0x20, 0x1C, // v 0x3C, 0x40, 0x30, 0x40, 0x3C, // w 0x44, 0x28, 0x10, 0x28, 0x44, // x 0x4C, 0x90, 0x90, 0x90, 0x7C, // y 0x44, 0x64, 0x54, 0x4C, 0x44, // z 0x00, 0x08, 0x36, 0x41, 0x00, // { 0x00, 0x00, 0x77, 0x00, 0x00, // | 0x00, 0x41, 0x36, 0x08, 0x00, // } 0x02, 0x01, 0x02, 0x04, 0x02, // ~ 0x00, 0x06, 0x09, 0x09, 0x06, // degrees }; template volatile unsigned char &_EP, unsigned char _CE, volatile unsigned char &_RP, unsigned char _RST, unsigned _RD> void Nokia7110<_SP, _CLK, _DATA, _CP, _DC, _EP, _CE, _RP, _RST, _RD>::print(char c) { write(&font[c - 32][0], 5); write(&font[0][0], 1); } template volatile unsigned char &_EP, unsigned char _CE, volatile unsigned char &_RP, unsigned char _RST, unsigned _RD> void Nokia7110<_SP, _CLK, _DATA, _CP, _DC, _EP, _CE, _RP, _RST, _RD>::print(const char *s) { while(*s) { write(&font[*s - 32][0], 5); write(&font[0][0], 1); ++s; } } template volatile unsigned char &_EP, unsigned char _CE, volatile unsigned char &_RP, unsigned char _RST, unsigned _RD> void Nokia7110<_SP, _CLK, _DATA, _CP, _DC, _EP, _CE, _RP, _RST, _RD>::print(const char *s, unsigned char m) { unsigned char c; while(*s) { c = font[*s - 32][0] ^ m; write(&c, 1); c = font[*s - 32][1] ^ m; write(&c, 1); c = font[*s - 32][2] ^ m; write(&c, 1); c = font[*s - 32][3] ^ m; write(&c, 1); c = font[*s - 32][4] ^ m; write(&c, 1); write(&m, 1); ++s; } } template volatile unsigned char &_EP, unsigned char _CE, volatile unsigned char &_RP, unsigned char _RST, unsigned _RD> void Nokia7110<_SP, _CLK, _DATA, _CP, _DC, _EP, _CE, _RP, _RST, _RD>::printv(unsigned char x, unsigned char y, char *s) { while(*s) { pos(x, y); ++y; write(&font[*s - 32][0], 5); write(&font[0][0], 1); ++s; } } static const unsigned char num11x16[19][11 * 2] = { 0x00,0xF0,0xFC,0xFE,0x06,0x02,0x06,0xFE,0xFC,0xF0,0x00, // 0 0x00,0x07,0x1F,0x3F,0x30,0x20,0x30,0x3F,0x1F,0x07,0x00, 0x00,0x00,0x08,0x0C,0xFC,0xFE,0xFE,0x00,0x00,0x00,0x00, // 1 0x00,0x20,0x20,0x20,0x3F,0x3F,0x3F,0x20,0x20,0x20,0x00, 0x00,0x0C,0x0E,0x06,0x02,0x02,0x86,0xFE,0x7C,0x38,0x00, // 2 0x00,0x30,0x38,0x3C,0x36,0x33,0x31,0x30,0x30,0x38,0x00, 0x00,0x0C,0x0E,0x86,0x82,0x82,0xC6,0xFE,0x7C,0x38,0x00, // 3 0x00,0x18,0x38,0x30,0x20,0x20,0x31,0x3F,0x1F,0x0E,0x00, 0x00,0x00,0xC0,0x20,0x18,0x04,0xFE,0xFE,0xFE,0x00,0x00, // 4 0x00,0x03,0x02,0x02,0x02,0x22,0x3F,0x3F,0x3F,0x22,0x02, 0x00,0x00,0x7E,0x7E,0x46,0x46,0xC6,0xC6,0x86,0x00,0x00, // 5 0x00,0x18,0x38,0x30,0x20,0x20,0x30,0x3F,0x1F,0x0F,0x00, 0x00,0xC0,0xF0,0xF8,0xFC,0x4C,0xC6,0xC2,0x82,0x00,0x00, // 6 0x00,0x0F,0x1F,0x3F,0x30,0x20,0x30,0x3F,0x1F,0x0F,0x00, 0x00,0x06,0x06,0x06,0x06,0x06,0xC6,0xF6,0x3E,0x0E,0x00, // 7 0x00,0x00,0x00,0x30,0x3C,0x0F,0x03,0x00,0x00,0x00,0x00, 0x00,0x38,0x7C,0xFE,0xC6,0x82,0xC6,0xFE,0x7C,0x38,0x00, // 8 0x00,0x0E,0x1F,0x3F,0x31,0x20,0x31,0x3F,0x1F,0x0E,0x00, 0x00,0x78,0xFC,0xFE,0x86,0x02,0x86,0xFE,0xFC,0xF8,0x00, // 9 0x00,0x00,0x00,0x21,0x21,0x31,0x1D,0x1F,0x0F,0x03,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x70,0x70,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // : 0x00,0x0E,0x0E,0x0E,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // . 0x00,0x38,0x38,0x38,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0xC0,0x30,0x0C,0x00,0x00,0x00,0x00, // / 0x00,0x30,0x0C,0x03,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80, // - 0x00,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x00,0x18,0x3C,0x66,0x66,0x3C,0x18,0x00,0x00,0x00,0x00, // 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0xF0,0xF8,0x0C,0x06,0x02,0x02,0x02,0x02,0x0E,0x0C,0x00, // C 0x03,0x07,0x0C,0x18,0x10,0x10,0x10,0x10,0x1C,0x0C,0x00, 0xFE,0xFE,0x42,0x42,0x42,0x42,0x42,0x42,0x00,0x00,0x00, // F 0x1F,0x1F,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0xFE,0xFE,0x40,0xE0,0xB0,0x18,0x0C,0x06,0x02,0x00,0x00, // K 0x1F,0x1F,0x00,0x00,0x01,0x03,0x06,0x0C,0x18,0x10,0x00 }; template volatile unsigned char &_EP, unsigned char _CE, volatile unsigned char &_RP, unsigned char _RST, unsigned _RD> void Nokia7110<_SP, _CLK, _DATA, _CP, _DC, _EP, _CE, _RP, _RST, _RD>::pd12(unsigned n, unsigned x, unsigned y) { pos(x, y); write(num11x16[n], 11, lcd_data); pos(x, ++y); write(num11x16[n] + 11, 11, lcd_data); } } // namespace
  6. Like
    dubnet reacted to jim940 in LaunchCAN?   
    Sorry I am pretty bad at coming up with catchy names.
     
    Anyways, my proposal at the moment involves a "double" booster size of 100x50mm. Which will allow it to sit nicely in a 1455C case from Hammond as well. It will have properly broken out headers for LaunchPad Booster packs.
     
    Anyways some of the initial specifications I want on the board:
     

    [*:vili5prf]TI MSP430G2553 TSSOP-28 (or using headers to a LP) (might need something "bigger"?)
    [*:vili5prf]Microchip MCP2515 CAN Bus Controller aka "SPI<->CAN Bridge"
    [*:vili5prf]TI SN65HVD235 CAN Transceiver w/Auto-Baud Loop Back checking
    [*:vili5prf]Bluehash's OLED display
    [*:vili5prf]Anaren CC110L Module
    [*:vili5prf]TI TCA8418 I2C Keypad Controller attached to a 4x3 or 4x4 Button Keypad
    [*:vili5prf]TI TCA6408A I/O Expander attached to 8 Status LED's for CAN Bus and system information
    [*:vili5prf]National LM34910 Switching Regulator
    [*:vili5prf]CANOpen DE-9 Connector (NOT compatible with SPF's OBD-II cable)
    [*:vili5prf]Phoenix M12 CAN Connector
     
    One thing you guys may be able to help me with, is how to use 2 power sources and have the system automatically switch from one to the other without user intervention. Never tried anything like that before. Currently in my head, the National LM34910 will provide approximately 3.3V at 500mA with a input range of 10 to 26V making it compatible with both 12V CAN Bus networks (automotive) and 24V CAN Bus networks (Industrial stuff), however a battery back up would provide for power using a TPS780 which will allow the MSP430 to power itself from 3.3V to 2.2V due to the selection pins when there is no power applied to the CAN Bus connectors.
     
    I might need something bigger then a G2553, however, my CANBus code when I did it on a Arduino was only 4.5K, and nearly 1.5K is automatically taken up by the bootloader when you write your program onto the Arduino, so it might just fit on a mere 16kB, but I am not sure at the moment. Might need a bigger chip, and I feel I would not have the memory space required to implement a SD Card storage on the G2553 at all. Any suggestions are welcomed.
     
    But there you have it a little do it all industrial interface board. I'll post schematics and pictures of the PCBs in due time.
     
    Jim
  7. Like
    dubnet reacted to gwdeveloper in Anaren TI CC110L RF AIR Booster Pack   
    From comparing the datasheets and register addresses, the CC110L and CC1101 are pretty similar. You should be able to run the SimpliciTI wireless stack with no issues. It compiles fine in CCS.
     
    There is a Launchpad/MSP430G2553 BSP for SimpliciTI at http://www.43oh.com/forum/viewtopic.php?f=8&t=1953. If you follow that tutorial, just change the predefined symbol from MRFI_CC2500 to MRFI_CC1101.
     
    For a very basic hardware init code, there is TI's CC1100-2500 HAL that would only need minor changes to run on the Launchpad. It runs great on the Fraunchpad, Ez430-rf2500t and EXP430F5529 boards.
     
    My AIR Booster packs should be arriving today. I'll post a success or fail for CCS this evening. It would be sweet to have the Chronos communicating with the Launchpad.
  8. Like
    dubnet reacted to RobG in Ethernet Booster Pack   
    [EDIT] The newest version of this BP is here
     
    [EDIT] This project is finished
    Available in the 43oh Store.

    This is still in it's early phase, so I need your input.

    Here are some specs so far:
    1. WIZnet's W5200 Ethernet controller chip (W5100 or W5300 is an option.)
    2. MagJack
    3. LDO + power header
    4. Opto isolators (2 or more) + output header
    5. Input/output header for switches/keypad/display
    6. DIP or SMD MSP430G

    I have decided to use W5200 because...
    "W5200 chip is a Hardwired TCP/IP embedded Ethernet controller that enables easier internet connection for embedded systems using SPI (Serial Peripheral Interface). The W5200 is composed of a fully hardwired market-proven TCP/IP stack and an integrated Ethernet MAC & PHY. Hardwired TCP/IP stack supports TCP, UDP, IPv4, ICMP,
    ARP, IGMP, and PPPoE. By using W5200, users can implement the Ethernet application they need by using a simple socket
    program instead of handling a complex Ethernet Controller."

    In other words, you do not have to deal with or waste resources on TCP/IP stack.

    The board could be used as a booster pack or free standing, hence MSP430G and LDO.
    The total cost should be around $10 or less.

    Few decisions I have to make:
    2 or more opto couplers?
    DIP, SMD or both (MSP430G?)

    Any suggestions?


  9. Like
    dubnet reacted to bluehash in Get CCSv5 for $25   
    Blog spam for c2kc, but here it is. I still have to change the header though
    Increasing Efficiency Through Digital Power Control
  10. Like
    dubnet reacted to oPossum in Using the internal temperature sensor   
    TI has some sample code for the internal temperature sensor, but it does not explain how to scale the ADC reading to useful units of degrees. Here is a step-by-step explanation of how to do the scaling with integer math for degrees C, K and F. There is also sample code to display the temperature on a Nokia 5110 LCD.

     
    The data sheet (SLAU144) has this formula for converting temperature in degrees Celsius to voltage.
    V = 0.00355 * C + 0.986

    What we need is a formula for converting voltage to temperature.
     
    Rewrite the data sheet fomula with temperature on the left
    0.00355 * C + 0.986 = V
     
    Divide both sides by 0.00355
    C + 277.75 = V / 0.00355
     
    Subtract 277.75 from both sides
    C = V / 0.00355 - 277.75
     
    Now we have a formula for converting voltage to temperature.
     
    The data sheet has this formula for converting voltage to ADC value, once again the opposite of what we neeed.

    For Vref- == 0
    A = 1023 * V / Vref
     
    Swap sides
    1023 * V / Vref = A
     
    Multiply by Vref
    1023 * V = A * Vref
     
    Divide by 1023
    V = A * Vref / 1023
     
    For a 1.5V reference
    V = A * 1.5 / 1023
     
    Simplify
    V = A * 0.0014663
     
    Substitute ADC conversion forumula for voltage in the temperature conversion formula.
    C = A * 0.0014663 / 0.00355 - 277.75
     
    Simplify
    C = A * 0.413 - 277.75
     
    Now we have a formula to convert ADC reading to temperature.
    It uses real numbers, so floating point math is required for good precision.
    Floating point is slow and requires more flash, so let's use integer math instead.
    Multiply by 65536 (2^16) and then divide by the same.
    C = (A * 27069 - 18202393) / 65536
     
    Use a right shift instead of divide. This will become a move of high word to low word.
    C = (A * 27069 - 18202393) >> 16
     
    Add 0.5 * 65536 to impove rounding.
    C = (A * 27069 - 18202393 + 32768) >> 16
     
    Simplify.
    C = (A * 27069 - 18169625) >> 16
     
    So that is how to go from ADC to degrees Celsius.
     
     
    To convert degrees C to degees K.
    K = C + 273.15
     
    Applied to ADC to degrees C conversion formula.
    K = (A * 27069 - 18169625) >> 16 - 273.15
     
    Implement with integer math by multiplying by 65536
    K = (A * 27069 - 18169625 - 17,901,158) >> 16
     
    Simplify.
    K = (A * 27069 - 268467) >> 16
     
    To convert degrees C to degrees F.
    F = C * 9 / 5 + 32
     
    Applied to voltage to degrees C conversion forumula
    F = (V / 0.00355 - 277.75) * 9 / 5 + 32
     
    Multiply by 9
    F = (V / 0.0003944 - 2499.75) / 5 + 32
     
    Divide by 5
    F = (V / 0.0019722 - 499.95) + 32
     
    Add 32
    F = V / 0.0019722 - 467.95
     
    Substitute ADC to voltage forumula
    F = A * 0.0014663 / 0.0019722 - 467.95
     
    Simplifiy
    F = A * 0.7435 - 467.95
     
    Convert to integer
    F = (A * 48724 - 30667156) >> 16
     
    Improve rounding
    F = (A * 48724 - 30667156 + 32768) >> 16
     
    Simplify
    F = (A * 48724 - 30634388) >> 16
     
    So now we have three formulas to convert ADC reading to degrees C, K and F using fast and compact integer math.
    C = (A * 27069 - 18169625) >> 16
    K = (A * 27069 - 268467) >> 16
    F = (A * 48724 - 30634388) >> 16
     
    Using the ADC value, rather than a different temperature scale, will ensure greatest precision for each temperature scale.
     
    main.c

    #include #include #include "lcd.h" #define ADC_SLEEP // Sleep during ADC conversion //#define SHOW_ADC // Show ADC raw and ADC millivolts // Print integer from -999 to 9999 using 12 x 16 font void print_int(int i, const unsigned y) { if(i < -999 || i > 9999) return; const unsigned neg = i < 0; if(neg) i = -i; div_t d; d.quot = i; unsigned x = 48; do { d = div(d.quot, 10); pd12(d.rem, x -= 12, y); } while(d.quot); if(neg) pd12(14, x -= 12, y); while(x) pd12(10, x -= 12, y); } // Print integer from 0 to 9999 vertically using 6 x 8 font void print_v(int i, unsigned x) { unsigned y = 4; unsigned c; if(i < 0 || i > 9999) return; div_t d; d.quot = i; do { d = div(d.quot, 10); c = d.rem + '0'; lcd_print((char *)&c, x, --y); } while(d.quot); c = ' '; while(y) lcd_print((char *)&c, x, --y); } void main(void) { unsigned adc; // ADC value int c, k, f; // Temperature in degrees C, K, and F unsigned mv; // ADC reading in millivolts // WDTCTL = WDTPW | WDTHOLD; // Disable watchdog reset // lcd_init(); // Initialize LCD lcd_clear(0); // pd12(15, 48, 0); // Degrees pd12(17, 59, 0); // F pd12(15, 48, 2); // Degrees pd12(16, 58, 2); // C pd12(15, 48, 4); // Degrees pd12(18, 59, 4); // K #ifdef SHOW_ADC // lcd_print("Am", 72, 4); // AD / mV lcd_print("DV", 72, 5); // #endif // // ADC10CTL0 = 0; // Configure ADC ADC10CTL1 = INCH_10 | ADC10DIV_3; // ADC10CTL0 = SREF_1 | ADC10SHT_3 | REFON | ADC10ON | ADC10IE; //ADC10CTL0 = SREF_1 | ADC10SHT_3 | REFON | ADC10ON | ADC10IE | REF2_5V; #ifdef ADC_SLEEP // ADC10CTL0 |= ADC10IE; // Enable ADC conversion complete interrupt #endif // // for(; { // for-ever #ifdef ADC_SLEEP // ADC10CTL0 |= (ENC | ADC10SC); // Begin ADC conversion __bis_SR_register(LPM0_bits + GIE); // Sleep until conversion complete #else // ADC10CTL0 &= ~ADC10IFG; // Clear conversion complete flag ADC10CTL0 |= (ENC | ADC10SC); // Begin ADC conversion while(!(ADC10CTL0 & ADC10IFG)); // Wait for conversion to complete #endif // // adc = ADC10MEM; // Read ADC // // Convert to temperature c = ((27069L * adc) - 18169625L) >> 16; // Vref = 1.5V //c = ((45115L * adc) - 18169625L) >> 16; // Vref = 2.5V // k = ((27069L * adc) - 268467L) >> 16; // Vref = 1.5V //k = ((45115L * adc) - 268467L) >> 16; // Vref = 2.5V // f = ((48724L * adc) - 30634388L) >> 16; // Vref = 1.5V //f = ((81206L * adc) - 30634388L) >> 16; // Vref = 2.5V // // Convert to millivolts mv = (96094L * adc + 32768) >> 16; // Vref = 1.5V //mv = (160156L * adc + 32768) >> 16; // Vref = 2.5V // // Display on LCD print_int(f, 0); // Degrees F print_int(c, 2); // Degrees C print_int(k, 4); // Degrees K // #ifdef SHOW_ADC // print_v(adc, 72); // ADC print_v(mv, 78); // ADC millivolts #endif // // //__delay_cycles(100000); // } // } #pragma vector = ADC10_VECTOR // ADC conversion complete interrupt __interrupt void ADC10_ISR(void) // { // __bic_SR_register_on_exit(LPM0_bits); // Wakeup main code } //
     
    lcd.h

    typedef enum { lcd_command = 0, // Array of one or more commands lcd_data = 1, // Array of one or more bytes of data lcd_data_repeat = 2 // One byte of data repeated } lcd_cmd_type; void lcd_send(const unsigned char *cmd, unsigned len, const lcd_cmd_type type); void lcd_home(void); void lcd_pos(unsigned char x, unsigned char y); void lcd_clear(unsigned char x); void lcd_init(void); void lcd_print(char *s, unsigned x, unsigned y); void pd12(unsigned n, unsigned x, unsigned y);
     
    lcd.c

    #include #include "lcd.h" //static const unsigned TXD = BIT1; static const unsigned RXD = BIT2; static const unsigned SWITCH = BIT3; static const unsigned LCD_CLK = BIT5; static const unsigned LCD_BACKLIGHT = BIT6; static const unsigned LCD_DATA = BIT7; static const unsigned LCD_DC = BIT0; // PORT2 static const unsigned LCD_CE = BIT1; // PORT2 void lcd_send(const unsigned char *cmd, unsigned len, const lcd_cmd_type type) { register unsigned mask; P2OUT &= ~LCD_CE; do { mask = 0x0080; do { if(*cmd & mask) { P1OUT &= ~LCD_CLK; P1OUT |= LCD_DATA; } else { P1OUT &= ~(LCD_CLK | LCD_DATA); } P1OUT |= LCD_CLK; mask >>= 1; } while(!(mask & 1)); if(!type) P2OUT &= ~LCD_DC; if(*cmd & mask) { P1OUT &= ~LCD_CLK; P1OUT |= LCD_DATA; } else { P1OUT &= ~(LCD_CLK | LCD_DATA); } P1OUT |= LCD_CLK; P2OUT |= LCD_DC; if(!(type & 2)) ++cmd; } while(--len); P2OUT |= LCD_CE; } static const unsigned char home[] = { 0x40, 0x80 }; void lcd_home(void) { lcd_send(home, sizeof(home), lcd_command); } void lcd_pos(unsigned char x, unsigned char y) { unsigned char c[2]; c[0] = 0x80 | x; c[1] = 0x40 | y; lcd_send(c, sizeof(c), lcd_command); } void lcd_clear(unsigned char x) { lcd_home(); lcd_send(&x, 504, lcd_data_repeat); lcd_home(); } void lcd_init(void) { static const unsigned char init[] = { 0x20 + 0x01, // function set - extended instructions enabled //0x80 + 64, // set vop (contrast) 0 - 127 0x80 + 66, // set vop (contrast) 0 - 127 0x04 + 0x02, // temperature control 0x10 + 0x03, // set bias system 0x20 + 0x00, // function set - chip active, horizontal addressing, basic instructions 0x08 + 0x04 // display control - normal mode }; P1REN = RXD | SWITCH; P1DIR = LCD_CLK | LCD_BACKLIGHT | LCD_DATA; P1OUT = LCD_CLK | RXD | SWITCH | LCD_BACKLIGHT; P2REN = 0; P2DIR = LCD_DC | LCD_CE; P2OUT = LCD_CE; __delay_cycles(20000); P2OUT |= LCD_DC; __delay_cycles(20000); lcd_send(init, sizeof(init), lcd_command); } static const unsigned char font6x8[96][5] = { 0x00, 0x00, 0x00, 0x00, 0x00, // 20 32 0x00, 0x00, 0x5F, 0x00, 0x00, // 21 33 ! 0x00, 0x07, 0x00, 0x07, 0x00, // 22 34 " 0x14, 0x7F, 0x14, 0x7F, 0x14, // 23 35 # 0x24, 0x2A, 0x7F, 0x2A, 0x12, // 24 36 $ 0x23, 0x13, 0x08, 0x64, 0x62, // 25 37 % 0x36, 0x49, 0x56, 0x20, 0x50, // 26 38 & 0x00, 0x08, 0x07, 0x03, 0x00, // 27 39 ' 0x00, 0x1C, 0x22, 0x41, 0x00, // 28 40 ( 0x00, 0x41, 0x22, 0x1C, 0x00, // 29 41 ) 0x2A, 0x1C, 0x7F, 0x1C, 0x2A, // 2A 42 * 0x08, 0x08, 0x3E, 0x08, 0x08, // 2B 43 + 0x00, 0x40, 0x38, 0x18, 0x00, // 2C 44 , 0x08, 0x08, 0x08, 0x08, 0x08, // 2D 45 - 0x00, 0x00, 0x60, 0x60, 0x00, // 2E 46 . 0x20, 0x10, 0x08, 0x04, 0x02, // 2F 47 / 0x3E, 0x51, 0x49, 0x45, 0x3E, // 30 48 0 0x00, 0x42, 0x7F, 0x40, 0x00, // 31 49 1 0x42, 0x61, 0x51, 0x49, 0x46, // 32 50 2 0x21, 0x41, 0x49, 0x4D, 0x33, // 33 51 3 0x18, 0x14, 0x12, 0x7F, 0x10, // 34 52 4 0x27, 0x45, 0x45, 0x45, 0x39, // 35 53 5 0x3C, 0x4A, 0x49, 0x49, 0x30, // 36 54 6 0x41, 0x21, 0x11, 0x09, 0x07, // 37 55 7 0x36, 0x49, 0x49, 0x49, 0x36, // 38 56 8 0x06, 0x49, 0x49, 0x29, 0x1E, // 39 57 9 0x00, 0x00, 0x14, 0x00, 0x00, // 3A 58 : 0x00, 0x00, 0x40, 0x34, 0x00, // 3B 59 ; 0x00, 0x08, 0x14, 0x22, 0x41, // 3C 60 < 0x14, 0x14, 0x14, 0x14, 0x14, // 3D 61 = 0x00, 0x41, 0x22, 0x14, 0x08, // 3E 62 > 0x02, 0x01, 0x51, 0x09, 0x06, // 3F 63 ? 0x3E, 0x41, 0x5D, 0x59, 0x4E, // 40 64 @ 0x7C, 0x12, 0x11, 0x12, 0x7C, // 41 65 A 0x7F, 0x49, 0x49, 0x49, 0x36, // 42 66 B 0x3E, 0x41, 0x41, 0x41, 0x22, // 43 67 C 0x7F, 0x41, 0x41, 0x41, 0x3E, // 44 68 D 0x7F, 0x49, 0x49, 0x49, 0x41, // 45 69 E 0x7F, 0x09, 0x09, 0x09, 0x01, // 46 70 F 0x3E, 0x41, 0x49, 0x49, 0x7A, // 47 71 G 0x7F, 0x08, 0x08, 0x08, 0x7F, // 48 72 H 0x00, 0x41, 0x7F, 0x41, 0x00, // 49 73 I 0x20, 0x40, 0x41, 0x3F, 0x01, // 4A 74 J 0x7F, 0x08, 0x14, 0x22, 0x41, // 4B 75 K 0x7F, 0x40, 0x40, 0x40, 0x40, // 4C 76 L 0x7F, 0x02, 0x1C, 0x02, 0x7F, // 4D 77 M 0x7F, 0x04, 0x08, 0x10, 0x7F, // 4E 78 N 0x3E, 0x41, 0x41, 0x41, 0x3E, // 4F 79 O 0x7F, 0x09, 0x09, 0x09, 0x06, // 50 80 P 0x3E, 0x41, 0x51, 0x21, 0x5E, // 51 81 Q 0x7F, 0x09, 0x19, 0x29, 0x46, // 52 82 R 0x26, 0x49, 0x49, 0x49, 0x32, // 53 83 S 0x01, 0x01, 0x7F, 0x01, 0x01, // 54 84 T 0x3F, 0x40, 0x40, 0x40, 0x3F, // 55 85 U 0x1F, 0x20, 0x40, 0x20, 0x1F, // 56 86 V 0x3F, 0x40, 0x38, 0x40, 0x3F, // 57 87 W 0x63, 0x14, 0x08, 0x14, 0x63, // 58 88 X 0x03, 0x04, 0x78, 0x04, 0x03, // 59 89 Y 0x61, 0x51, 0x49, 0x45, 0x43, // 5A 90 Z 0x00, 0x7F, 0x41, 0x41, 0x41, // 5B 91 [ 0x02, 0x04, 0x08, 0x10, 0x20, // 5C 92 '\' 0x00, 0x41, 0x41, 0x41, 0x7F, // 5D 93 ] 0x04, 0x02, 0x01, 0x02, 0x04, // 5E 94 ^ 0x80, 0x80, 0x80, 0x80, 0x80, // 5F 95 _ 0x00, 0x03, 0x07, 0x08, 0x00, // 60 96 ' 0x20, 0x54, 0x54, 0x54, 0x78, // 61 97 a 0x7F, 0x28, 0x44, 0x44, 0x38, // 62 98 b 0x38, 0x44, 0x44, 0x44, 0x28, // 63 99 c 0x38, 0x44, 0x44, 0x28, 0x7F, // 64 100 d 0x38, 0x54, 0x54, 0x54, 0x18, // 65 101 e 0x00, 0x08, 0x7E, 0x09, 0x02, // 66 102 f 0x18, 0xA4, 0xA4, 0xA4, 0x7C, // 67 103 g 0x7F, 0x08, 0x04, 0x04, 0x78, // 68 104 h 0x00, 0x44, 0x7D, 0x40, 0x00, // 69 105 i 0x00, 0x20, 0x40, 0x40, 0x3D, // 6A 106 j 0x00, 0x7F, 0x10, 0x28, 0x44, // 6B 107 k 0x00, 0x41, 0x7F, 0x40, 0x00, // 6C 108 l 0x7C, 0x04, 0x78, 0x04, 0x78, // 6D 109 m 0x7C, 0x08, 0x04, 0x04, 0x78, // 6E 110 n 0x38, 0x44, 0x44, 0x44, 0x38, // 6F 111 o 0xFC, 0x18, 0x24, 0x24, 0x18, // 70 112 p 0x18, 0x24, 0x24, 0x18, 0xFC, // 71 113 q 0x7C, 0x08, 0x04, 0x04, 0x08, // 72 114 r 0x48, 0x54, 0x54, 0x54, 0x24, // 73 115 s 0x04, 0x04, 0x3F, 0x44, 0x24, // 74 116 t 0x3C, 0x40, 0x40, 0x20, 0x7C, // 75 117 u 0x1C, 0x20, 0x40, 0x20, 0x1C, // 76 118 v 0x3C, 0x40, 0x30, 0x40, 0x3C, // 77 119 w 0x44, 0x28, 0x10, 0x28, 0x44, // 78 120 x 0x4C, 0x90, 0x90, 0x90, 0x7C, // 79 121 y 0x44, 0x64, 0x54, 0x4C, 0x44, // 7A 122 z 0x00, 0x08, 0x36, 0x41, 0x00, // 7B 123 { 0x00, 0x00, 0x77, 0x00, 0x00, // 7C 124 | 0x00, 0x41, 0x36, 0x08, 0x00, // 7D 125 } 0x02, 0x01, 0x02, 0x04, 0x02, // 7E 126 ~ 0x00, 0x06, 0x09, 0x09, 0x06, // 7F 127 degrees }; void lcd_print(char *s, unsigned x, unsigned y) { unsigned char c[2]; c[0] = 0x80 | x; c[1] = 0x40 | y; lcd_send(c, sizeof(c), lcd_command); while(*s) { lcd_send(&font6x8[*s - 32][0], 5, lcd_data); lcd_send(&font6x8[0][0], 1, lcd_data); ++s; } } static const unsigned char num11x16[19][11 * 2] = { 0x00,0xF0,0xFC,0xFE,0x06,0x02,0x06,0xFE,0xFC,0xF0,0x00, // 0 0x00,0x07,0x1F,0x3F,0x30,0x20,0x30,0x3F,0x1F,0x07,0x00, 0x00,0x00,0x08,0x0C,0xFC,0xFE,0xFE,0x00,0x00,0x00,0x00, // 1 0x00,0x20,0x20,0x20,0x3F,0x3F,0x3F,0x20,0x20,0x20,0x00, 0x00,0x0C,0x0E,0x06,0x02,0x02,0x86,0xFE,0x7C,0x38,0x00, // 2 0x00,0x30,0x38,0x3C,0x36,0x33,0x31,0x30,0x30,0x38,0x00, 0x00,0x0C,0x0E,0x86,0x82,0x82,0xC6,0xFE,0x7C,0x38,0x00, // 3 0x00,0x18,0x38,0x30,0x20,0x20,0x31,0x3F,0x1F,0x0E,0x00, 0x00,0x00,0xC0,0x20,0x18,0x04,0xFE,0xFE,0xFE,0x00,0x00, // 4 0x00,0x03,0x02,0x02,0x02,0x22,0x3F,0x3F,0x3F,0x22,0x02, 0x00,0x00,0x7E,0x7E,0x46,0x46,0xC6,0xC6,0x86,0x00,0x00, // 5 0x00,0x18,0x38,0x30,0x20,0x20,0x30,0x3F,0x1F,0x0F,0x00, 0x00,0xC0,0xF0,0xF8,0xFC,0x4C,0xC6,0xC2,0x82,0x00,0x00, // 6 0x00,0x0F,0x1F,0x3F,0x30,0x20,0x30,0x3F,0x1F,0x0F,0x00, 0x00,0x06,0x06,0x06,0x06,0x06,0xC6,0xF6,0x3E,0x0E,0x00, // 7 0x00,0x00,0x00,0x30,0x3C,0x0F,0x03,0x00,0x00,0x00,0x00, 0x00,0x38,0x7C,0xFE,0xC6,0x82,0xC6,0xFE,0x7C,0x38,0x00, // 8 0x00,0x0E,0x1F,0x3F,0x31,0x20,0x31,0x3F,0x1F,0x0E,0x00, 0x00,0x78,0xFC,0xFE,0x86,0x02,0x86,0xFE,0xFC,0xF8,0x00, // 9 0x00,0x00,0x00,0x21,0x21,0x31,0x1D,0x1F,0x0F,0x03,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x70,0x70,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // : 0x00,0x0E,0x0E,0x0E,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // . 0x00,0x38,0x38,0x38,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0xC0,0x30,0x0C,0x00,0x00,0x00,0x00, // / 0x00,0x30,0x0C,0x03,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80, // - 0x00,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x00,0x18,0x3C,0x66,0x66,0x3C,0x18,0x00,0x00,0x00,0x00, // 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0xF0,0xF8,0x0C,0x06,0x02,0x02,0x02,0x02,0x0E,0x0C,0x00, // C 0x03,0x07,0x0C,0x18,0x10,0x10,0x10,0x10,0x1C,0x0C,0x00, 0xFE,0xFE,0x42,0x42,0x42,0x42,0x42,0x42,0x00,0x00,0x00, // F 0x1F,0x1F,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0xFE,0xFE,0x40,0xE0,0xB0,0x18,0x0C,0x06,0x02,0x00,0x00, // K 0x1F,0x1F,0x00,0x00,0x01,0x03,0x06,0x0C,0x18,0x10,0x00 }; void pd12(unsigned n, unsigned x, unsigned y) { unsigned char c[2]; c[0] = 0x80 | x; c[1] = 0x40 + y; lcd_send(c, 2, lcd_command); lcd_send(num11x16[n], 11, lcd_data); c[1] = 0x41 + y; lcd_send(c, 2, lcd_command); lcd_send(num11x16[n] + 11, 11, lcd_data); }
  11. Like
    dubnet got a reaction from zborgerd in [TIDEALS] EZ430-Chronos Wireless Watch Development Tool   
    It is also referenced on TI's Facebook page along with the first item to be discounted:
     
    http://www.facebook.com/pages/TI-Microcontrollers/146834707997
  12. Like
    dubnet got a reaction from oPossum in [TIDEALS] EZ430-Chronos Wireless Watch Development Tool   
    It is also referenced on TI's Facebook page along with the first item to be discounted:
     
    http://www.facebook.com/pages/TI-Microcontrollers/146834707997
  13. Like
    dubnet got a reaction from bluehash in [TIDEALS] EZ430-Chronos Wireless Watch Development Tool   
    It is also referenced on TI's Facebook page along with the first item to be discounted:
     
    http://www.facebook.com/pages/TI-Microcontrollers/146834707997
  14. Like
    dubnet reacted to gwdeveloper in [TIDEALS] EZ430-Chronos Wireless Watch Development Tool   
    Have you guys caught this yet? Sounds pretty interesting... Every 2 weeks, a new discounted item for sale. :clap:
     
    http://tideals.com/
  15. Like
    dubnet reacted to oPossum in 256 x 192 graphics display using Fraunchpad - preview   
    A frame buffer for 256x192 pixels requires 6k. That is more than will fit in RAM, so the frame buffer is in the FRAM memory. NTSC video generated using TimerA0 for sync, and SPI with DMA for video.
     
    Graphics library functions:


    [*:hf56qo2f]Pixel
    [*:hf56qo2f]Line
    [*:hf56qo2f]Box
    [*:hf56qo2f]Circle
    [*:hf56qo2f]Ellipse
    [*:hf56qo2f]Quadratic and cubic bezier curve
    [*:hf56qo2f]BitBlt up to 24 pixels wide
    [*:hf56qo2f]OR, AND, and XOR drawing modes
    [*:hf56qo2f]Text with 8 x 12 font
     


  16. Like
    dubnet got a reaction from zborgerd in Using ADC to make Voltage Measurements   
    Hello Rageinside,
     
    If the grounds are tied together you could potentially have 500mA+ flowing through your resistor. You may want to consider using an instrumentation amplifier across the resistor. This would have the added benefit of significantly reducing the common mode voltage influence on your measurement, which would improve accuracy.
×
×
  • Create New...