Jump to content
Forum sending old emails Read more... ×

Leaderboard


Popular Content

Showing content with the highest reputation since 01/17/2019 in all areas

  1. 2 points
    In case it might be of use to someone, I've posted a Youtube video and created a Github repo dealing with an alternate way of multiplexing 7-segment displays that has a greatly reduced parts count. It's multiplexing by segment instead of by digit. The video shows this method implemented with an MSP430G2553. The Github repo has demonstration Arduino Nano sketches, but they should work as-is with Energia except for the pin assignments. The video is on my local OSH group's channel, and I can't respond to comments there, but will answer questions here if there are any. https://www.youtube.com/watch?v=8w09Zy8MQrc https://github.com/gbhug5a/7-Segment-Displays-Multiplex-by-Segment
  2. 1 point
    energia

    How to program "raw" CC1330 chip?

    Interesting. I did not know about these modules. Thank you for bringing this to my attention. Which module do you have (frequency)? These module are intended to be used as a network processor connected to an MCU. Looking at the user manual there is no serial loader implemented nor a way to update the firmware over the air. With that said, it seems that the modules expose the TCKC, TMSC and RESET line. You should be able to hookup these lines from the LaunchPad's XDS110 if you have one to program it with Energia. Please not that there are pin mappings specific for the LaunchPad that you might want to change.
  3. 1 point
    Rei Vilo

    MSP430FR6989 pins_energia file

    Check Add a New Board to Energia
  4. 1 point
    INTRODUCTION This guide's intent and purpose is to allow a user with minimal Linux experience to successfully setup an absolutely free development environment to program the STM32F0 microcontroller with full debugging capability. PREREQUISITES A Linux distro, I used Linux Mint 13 (Ubuntu works nicely too) An Internet connection At least 2gb of spare hard drive space Familiarity with terminal A STM32F0 Discovery Board! PART 1 – Install Codesourcy PART 2 – Install OpenOCD PART 3 – Install Eclipse PART 4 – Setup File Directory PART 5 – Setup Eclipse PART 6 – Configure the gdb/OpenOCD Hope you enjoy! Any questions, comments, feedback, feel free to sound off below.Also a STM32F4 guide is on its way. When it gets here depends on how much spare time I have.... Edit: Thanks bluehash! Guide is now hosted on arm-hq. v1-2 Downloads stm32f0_v2.doc
  5. 1 point
    This is OK, but my MSP430G2533 7-segment working (multiplexing) digit-by-digit without resistors. Current (and brightness) is handled by PWM (WD). Device (PDIP) is mounted under the display.
  6. 1 point
    I couldn't solve the problem with Mspdebug Solved with CCS Cloud on Windows : On Debug menu I could launch 'Recovery' then 'Update ' 🙂 Launchpad is now OK... next step : test again on Unbuntu 18.10 (without modemmanager holding TTY/ACM0....) OK with last Energia running on Ubuntu 18.10 (32 bit libmsp430.so coming Energie replaced by 64 bit one,)
  7. 1 point
    Peabody

    Places we buy things...

    I'm in the US, and I've generally had good results with Banggood. Their products are pretty much the same as you would find on Ebay, but they appear to care about customer service, at least in my experience. The biggest issue for me has been shipping. On two occasions I've paid a higher price to get something from the US warehouse, thinking that shipping would be much faster. But that hasn't worked. The last time I ordered, the items from China arrived before the US items, which took 18 days via DHL. I've become a real non-fan of US domestic DHL. They are much slower than anyone else. I mean, 18 days. There's no excuse for that. I don't know what shipping and customs problems you will have in Canada. Maybe someone else can advise you on that. But with regard to the products, I would generally feel comfortable with Banggood. Of course it depends on how much you're going to spend.
  8. 1 point
    This board is indeed obsoleted. It was replaced by the RED board many years ago. The TI-RTOS version it was based on no longer receives updates. Hence, it was time to retire this. If you still like access to this board then do the following: Open Energia's preferences (File->Preferences or on macOS Energia->Preferences) Located "Additional Boards Manager URLs" and paste the following link into that field: https://energia.nu/packages/package_msp432_black_index.json Go to the board manager and you should see the black board appear again. Good luck with your Robot project. Robert
  9. 1 point
    Hello everyone, There is a couple of similar projects available on the internet. Some of them base on Arduino and PIC performs very basic mount control without math intensive computation implemented in embedded controller. I decided to build my own with the following goals: ease of use by an inexperienced amateur astronomer (full automatic operation) precision and resolution of position last but not least: the price Final, or better say at the moment, design comprises of the following components: Stellaris LM4F launchpad central control unit, two ULN2003 unipolar stepper motor driver chips, two 28byj-48 stepper motors one moving in azimuth, and in elevation via gear train, communication module: Bluetooth serial module. It allows sending a coordinate set-point and provides position feedback to Stellarium, GPS module providing position and precise time reference - PPS gives 1us accuracy, Nokia 5110 display unit and joystick for standalone operation, now obsolete mouse (PS/2) modified to provide independent (incremental) position information Resolution that was reached is a single step of approx. 5". Given the size of Jupiter to range from 30" to 50", this positioning resolution makes the view comfortably stable in standard 60° FOV eyepiece at reasonably high magnification, without the need to adjust AZ/ALT continuously. During the development I made use of several opensource and projects available online, namely: AccelStepper for stepper control, TinyGPS++ for NMEA decoding, Arduino telescope controller was my inspiration and reference for Taki's matrix method for coordinates transformation, of course Energia as my IDE Upon power-up the mount is performing: homing acquisition of current location (longitude/latitude) and time via NMEA stream moves to 3 brightest (most convenient) stars in succession to perform 3 star alignment procedure - they are selected from the list of over 500 stars in built-in catalog (the brightest are used for the alignment, tough), once aligned the mount is in tracking mode: it tracks the view to counter the apparent movement of objects in the sky, waiting, either for the user to move to particular object - selected from the library of stars and Messier objects, or awaits connection via Bluetooth from a PC running Stellarium with a plugin and slews to selected object. search for the object that should be visible in the eyepiece and display important information on LCD - I compiled in 500 brightest stars from HYGXYZ and full Messier catalog. I have very little experience as amateur astronomer so far, so some of the objectives might have been not very obvious for me in the beginning. This project was also a good way to make use of my free time and gain experience in embedded system design. With kind regards, Szymon
×