Search the Community

Showing results for tags 'stack'.

More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


  • News
    • Announcements
    • Suggestions
    • New users say Hi!
  • Spotlight!
    • Sponsor Spotlight
    • Sponsor Giveaways
  • Energia
    • Energia - MSP
    • Energia - TivaC/CC3XXX
    • Energia - C2000
    • Energia Libraries
  • MSP Technical Forums
    • General
    • Compilers and IDEs
    • Development Kits
    • Programmers and Debuggers
    • Code vault
    • Projects
    • Booster Packs
    • Energia
  • Tiva-C, Hercules, CCXXXX ARM Technical Forums
    • General
    • SensorTag
    • Tiva-C, Hercules, CC3XXX Launchpad Booster Packs
    • Code Vault
    • Projects
    • Compilers and IDEs
    • Development Kits and Custom Boards
  • Beagle ARM Cortex A8 Technical Forums
    • General
    • Code Snippets and Scripts
    • Cases, Capes and Plugin Boards
    • Projects
  • General Electronics Forum
    • General Electronics
    • Other Microcontrollers
  • Connect
    • Embedded Systems/Test Equipment Deals
    • Buy, Trade and Sell
    • The 43oh Store
    • Community Projects
    • Fireside Chat
  • C2000 Technical Forums
    • General
    • Development Kits
    • Code Vault
    • Projects
    • BoosterPacks


There are no results to display.

Found 3 results

  1. Hi, I needed a way to see how much of my C++ stack was being consumed in my MSP application - the traditional way is to "poison" the stack with a known pattern, and then to see how much of it gets burnt away. So I wrote the following - hope folk find it useful: The following code allows you to simply do this and to check at any point how much of the pre-allocated stack was consumed during peak usage, i.e. how close your app got to the bottom of the stack, or indeed, whether it over-ran. The TI CCS documentation is completely wrong in the names it gives for the global symbols that define the size and start of the stack - needs to be updated, Stick this code (or similar) wherever you want to report on/check stack usage <smallest number of byes left free on the stack since initialisation>/<configured size of the stack>. #if defined(STACK_CHECK) std::printf( "Stack: %d/%d\n", stackMinFreeCount(), stackMaxSize() ); #endif and then, in your main code you need to poison the stack as early as possible and then define the reporting routines: // Define STACK_CHECK to include stack usage diagnostics #define STACK_CHECK #if defined(STACK_CHECK) #define STACK_INIT 0xBEEF // Pattern to use to initially poison the stack extern uint16_t _stack; // Start of stack (low address) uint16_t stackMinFreeCount(void); uint16_t stackMaxSize(void); #endif #if defined(__cplusplus) extern "C" { #endif #if defined(__TI_COMPILER_VERSION__) || \ defined(__GNUC__) int _system_pre_init( void ) #elif defined(__IAR_SYSTEMS_ICC__) int __low_level_init( void ) #endif { //... stuff... #if defined(STACK_CHECK) // // Poison the stack, word by word, with a defined pattern // // Note that _system_pre_init is the earliest that we can // do this and that it may not be possible in TI-RTOS // // When we call the __get_SP_register intrinsic (same on IAR & CCS), it will return the address // of the RET address for the caller of this routine. Make sure that we don't trash it!! // register uint16_t *stack = &_stack; // Address of lowest address in .stack section register uint16_t *stack_top = reinterpret_cast<uint16_t *>(__get_SP_register()); do { *stack++ = STACK_INIT; // Poison stack addresses } while (stack < stack_top); // Stop before top of stack to leave RET address #endif return 1; } #if defined(__cplusplus) } #endif #if defined(STACK_CHECK) /** * Check how deep the stack usage has been * * \return \c uint16_t Minimum number of bytes to bottom of stack */ extern uint16_t __STACK_END; // End of data extern uint16_t __STACK_SIZE; // Linker-set size of stack uint16_t stackMinFreeCount(void) { const uint16_t *stack = &_stack; uint16_t freeCount = 0; while (*stack == STACK_INIT && stack++ <= &__STACK_END) { freeCount++; } return freeCount << 1; } /** * Return size of C++ stack * * Set by the linker --stack_size option * * \return \c uint16_t Configued maximum size of the stack in bytes */ uint16_t stackMaxSize(void) { return static_cast<uint16_t>( _symval(&__STACK_SIZE) ); } #endif int main(void) { ... stuff #if defined(STACK_CHECK) std::printf( "Stack: %d/%d\n", stackMinFreeCount(), stackMaxSize() ); #endif ...stuff }
  2. Here's a great webinar on the topic of stack overflow from basics like stack sizing all the way to stack usage estimation and analysis, stack monitoring and stack overflow handling. Recording: Transcript: Found via the Embedded Muse newsletter.
  3. Hi all, I need to make a display with wireless interface. In this case, i use Anaren AIR CC2530, MSP430 Launchpad Value Line, and BCD Display I have succesfully connected my MSP430 Launchpad with ANAREN AIR. It is less problematic there. The problem is when i try to stack the BCD Display to launchpad (without Anaren AIR). It took me 1 week to notice that i need to remove jumper J5 to make the BCD display work. (The BCD display need P1.6 connector to be connected to the pin, not to the LED). After i make that jumper open, the display is now showing the graphics. Now, i need to stack Launchpad-Anaren AIR-BCD Display. I thought it would work without any modification. Unfortunately, the same code won't work for current stack setup. So i think there should be a port conflict problem again. How should i configure the port J1 and J2? So that i can use both the Anaren AIR and the BCD Display (it seems there is some port-conflict there, but i have no idea what port which is conflicting). Is there any jumper or variable in codes that i should notice? Update: I noticed the schematics that P1.6 and P1.7 is controlled by A2530 chip, which is used by the BCD Display. Is there any way to make P1.6 and P1.7 usable by MSP430 chip and not reserved by A2530 chip?